Sunflower genome sequence to provide roadmap for more resilient crops

May 22, 2017

Athens, Ga. - University of Georgia researchers are part of an international team that has published the first sunflower genome sequence. This new resource will assist future research programs using genetic tools to improve crop resilience and oil production.

They published their findings today in the journal Nature.

Known for its beauty and also as an important source of food, the sunflower is a global oil crop that shows promise for climate change adaptation because it can maintain stable yields across a wide variety of environmental conditions, including drought. However, assembling the sunflower genome has until recently been difficult, because it mostly consists of highly similar, related sequences.

The research team in North America and Europe sequenced the genome of the domesticated sunflower Helianthus annuus L. They also performed comparative and genome-wide analyses, which provide insights into the evolutionary history of Asterids, a subgroup of flowering plants that includes potatoes, tomatoes and coffee.

They identified new candidate genes and reconstructed genetic networks that control flowering time and oil metabolism, two major sunflower breeding traits, and found that the flowering time networks have been shaped by the past duplication of the entire genome. Their findings suggest that ancient copies of genes can retain their functionality and still influence traits of interest after tens of millions of years.

"As the first reference sequence of the sunflower genome, it's quite the accomplishment," said paper co-author John M. Burke, professor of plant biology and member of the UGA Plant Center. "The sunflower genome is over 40 percent larger than the maize [corn] genome, and roughly 20 percent larger than the human genome, and its highly repetitive nature made it a unique challenge for assembly."

Burke, whose lab studies the genomic basis of evolutionary divergence within the sunflower family, was involved in the genetic mapping upon which the genome assembly was based and oversaw the whole genome re-sequencing of the 80 sunflower lines described in the paper.

The international collaboration was led by Nicolas Langlade at the French National Institute for Agricultural Research in Toulouse, France, and included Loren Rieseberg of the University of British Columbia.

"Like many plant genomes, the sunflower genome is highly repetitive, though in this case the situation is a bit worse," Burke said. "The repetitive elements within the genome arose relatively recently, meaning that they haven't had time to differentiate. It's therefore like putting together a massive puzzle wherein many pieces look exactly the same, or nearly so."

The authors concluded that this research reinforces the sunflower as a model for ecological and evolutionary studies and climate change adaptation, and will accelerate breeding programs.

"It will greatly facilitate our work to understand the molecular mechanisms underlying key traits related to abiotic stress resistance--things like drought, salinity and low nutrient resistance," Burke said. "This genome sequence will essentially serve as a genetic road map to pinpoint the genes underlying these sorts of traits."
-end-
An online version of the full study, "The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution," is available at http://www.nature.com/nature/journal/vaop/ncurrent/full/nature22380.html

University of Georgia

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.