Nav: Home

Ultrafast nanophotonics: Turmoil in sluggish electrons' existence

May 22, 2017

An international team of physicists has monitored the scattering behavior of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as 'sluggish'. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence relatively still in a dielectric crystal lattice. This idyll has now been heavily shaken up by a team of physicists led by Matthias Kling, the leader of the Ultrafast Nanophotonics group in the Department of Physics at Ludwig-Maximilians-Universitaet (LMU) in Munich, and various research institutions, including the Max Planck Institute of Quantum Optics (MPQ), the Institute of Photonics and Nanotechnologies (IFN-CNR) in Milan, the Institute of Physics at the University of Rostock, the Max Born Institute (MBI), the Center for Free-Electron Laser Science (CFEL) and the University of Hamburg. For the first time, these researchers managed to directly observe the interaction of light and electrons in a dielectric, a non-conducting material, on timescales of attoseconds (billionths of a billionth of a second). The study was published in the latest issue of the journal Nature Physics.

The scientists beamed light flashes lasting only a few hundred attoseconds onto 50 nanometer thick glass particles, which released electrons inside the material. Simultaneously, they irradiated the glass particles with an intense light field, which interacted with the electrons for a few femtoseconds (millionths of a billionth of a second), causing them to oscillate. This resulted, generally, in two different reactions by the electrons. First, they started to move, then collided with atoms within the particle, either elastically or inelastically. Because of the dense crystal lattice, the electrons could move freely between each of the interactions for only a few ångstrom (10-10 meter). "Analogous to billiard, the energy of electrons is conserved in an elastic collision, while their direction can change. For inelastic collisions, atoms are excited and part of the kinetic energy is lost. In our experiments, this energy loss leads to a depletion of the electron signal that we can measure," explains Professor Francesca Calegari (CNR-IFN Milan and CFEL/University of Hamburg).

Since chance decides whether a collision occurs elastically or inelastically, with time inelastic collisions will eventually take place, reducing the number of electrons that scattered only elastically. Employing precise measurements of the electrons' oscillations within the intense light field, the researchers managed to find out that it takes about 150 attoseconds on average until elastically colliding electrons leave the nanoparticle. "Based on our newly developed theoretical model we could extract an inelastic collision time of 370 attoseconds from the measured time delay. This enabled us to clock this process for the first time," describes Professor Thomas Fennel from the University of Rostock and Berlin's Max Born Institute in his analysis of the data.

The researchers' findings could benefit medical applications. With these worldwide first ultrafast measurements of electron motions inside non-conducting materials, they have obtained important insight into the interaction of radiation with matter, which shares similarities with human tissue. The energy of released electrons is controlled with the incident light, such that the process can be investigated for a broad range of energies and for various dielectrics. "Every interaction of high-energy radiation with tissue results in the generation of electrons. These in turn transfer their energy via inelastic collisions onto atoms and molecules of the tissue, which can destroy it. Detailed insight about electron scattering is therefore relevant for the treatment of tumors. It can be used in computer simulations to optimize the destruction of tumors in radiotherapy while sparing healthy tissue," highlights Professor Matthias Kling of the impact of the work. As a next step, the scientists plan to replace the glass nanoparticles with water droplets to study the interaction of electrons with the very substance which makes up the largest part of living tissue.

Ludwig-Maximilians-Universität München

Related Electrons Articles:

Hot electrons harvested without tricks
Semiconductors convert energy from photons into an electron current. However, some photons carry too much energy for the material to absorb.
Cooling nanotube resonators with electrons
In a study in Nature Physics, ICFO researchers report on a technique that uses electron transport to cool a nanomechanical resonator near the quantum regime.
New method for detecting quantum states of electrons
Researchers in the Quantum Dynamics Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) devised a new method -- called image charge detection -- to detect electrons' transitions to quantum states.
Slow electrons to combat cancer
Slow electons can be used to destroy cancer cells - but how exactly this happens has not been well understood.
How light steers electrons in metals
Researchers in the Department of Physics of ETH Zurich have measured how electrons in so-called transition metals get redistributed within a fraction of an optical oscillation cycle.
Twisting whirlpools of electrons
Using a novel approach, EPFL physicists have been able to create ultrafast electron vortex beams, with significant implications for fundamental physics, quantum computing, future data-storage and even certain medical treatments.
Inner electrons behave differently in aromatic hydrocarbons
In an international research collaboration between Tsinghua University in Beijing and Sorbonne University in Paris, scientists found that four hydrocarbon molecules, known for their internal ring structure, have a lower threshold for the release of excess energy than molecules without a similar ring structure, because one of their electrons decays from a higher to a lower energy level, a phenomenon called the Auger effect.
Exotic spiraling electrons discovered by physicists
Rutgers and other physicists have discovered an exotic form of electrons that spin like planets and could lead to advances in lighting, solar cells, lasers and electronic displays.
Racing electrons under control
The advantage is that electromagnetic light waves oscillate at petaherz frequency.
Electrons go with the flow
You turn on a switch and the light switches on because electricity 'flows'.
More Electrons News and Electrons Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab