Nav: Home

Pulmonary Thrombosis-on-a-Chip provides new avenue for drug development

May 22, 2017

(BOSTON) The average human pair of lungs is permeated by a network of about 164 feet of blood vessels (roughly the width of a football field), including microscopic blood capillaries, which facilitate the diffusion of oxygen into the bloodstream in exchange for carbon dioxide. Damage to any of those vessels can cause a blood clot, or thrombus, to form, which can cause or exacerbate a number of lung diseases, including pneumonia, acute lung injury and acute chest syndrome. The use of some drugs is also limited by their propensity to promote clot formation in lung vessels. Developing and testing drugs to treat or prevent pulmonary thrombosis is difficult because the complex interplay between the many different cell types in the lung hampers efforts to tease out the exact causes of clot formation. A new study conducted by members of the Wyss Institute at Harvard University, Emulate Inc., and Janssen Pharmaceutical Research and Development, published today in the journal Clinical Pharmacology and Therapeutics, is the first to successfully recreate a human pulmonary thrombosis within an organ-level model of the lung in vitro.

"It's very difficult to distill out specific mechanisms inside an animal, and a lot of work in toxicology or drug discovery fails when it goes to human clinical trials," says co-first author Abhishek Jain, Ph.D., former Wyss Institute Postdoctoral Fellow and current Assistant Professor of Biomedical Engineering at Texas A&M University. "In vitro models like our Thrombosis-on-a-Chip are made from the ground-up, so you can build them to be exactly as complex as you need for the problem you want to study."

To meet this challenge, the team used Organ-on-a-Chip (Organ Chip) technology developed at the Wyss Institute, which involves engineering microfluidic culture devices with two parallel channels separated by a porous extracellular-matrix-coated membrane. The key innovation in this new design relative to a previously described Lung-on-a-Chip is that the upper surface of the porous membrane is lined by primary human alveolar epithelial cells, and all sides of the lower vascular channel are coated with a layer of lung microvascular endothelium to accurately mimic human lung capillaries. Because thrombosis is perpetrated by platelets and other cells, the team perfused whole human blood through the lower endothelium-lined channel of the chip for the first time, while air was introduced into the upper channel. When an inflammatory stimulus was applied to the endothelial cells followed by perfusing whole blood, platelets clumped and formed blood clots on the surface of the endothelium in a characteristic teardrop shape that has been observed in living animals, but never before in vitro.

"This is the first time we're seeing clots form with the same dynamics and morphology that you see in vivo, which is a major step forward in studying and eventually treating blood clots that cause many life-threatening diseases." says Donald Ingber, M.D., Ph.D., senior author of the study and the Judah Folkman Professor of Vascular Biology at Harvard Medical School (HMS) and the Vascular Biology Program at Boston Children's Hospital, as well as Professor of Bioengineering at Harvard's School of Engineering and Applied Sciences (SEAS).

The team further tested the chip's functionality by replicating an inflammatory lung injury that originates in the lung's airways - the most likely source of a pathogen or other damaging substance. They introduced lipopolysaccharide endotoxin (LPS), an inflammatory chemical found on the surface of certain types of bacteria and is known to induce clot formation in vivo, into both the upper and lower channels of the chip. They were surprised to find that LPS had no effect on blood clot formation when they added it directly to the endothelium-lined blood channel; but, when added to the air channel, it induced the air-facing epithelium to trigger a cascade of cytokines, a class of inflammatory signaling molecules that initiate blood clot formation, in the underlying endothelium. "Epithelial cells are the guardians of the airways - they need to be sensitive to airborne pathogens and then signal the danger to the rest of the body," says co-author Riccardo Barrile, Ph.D., also a former Wyss Institute Postdoctoral Fellow and current principal investigator at Emulate, Inc. "This study demonstrated that information travels from the epithelium to the endothelium, but I was surprised to see that the entire system is so well-connected."

In addition to facilitating the discovery of crucial insights into the mechanism of how lung injury promotes blood clot formation, the Thrombosis-on-a-Chip allows for the testing of potential drugs on an organ-level system in vitro, an approach that has become highly attractive to pharmaceutical companies. Working with Robert Flaumenhaft, M.D., Ph.D., Associate Professor of Hematology at HMS and Beth Israel Deaconess Medical Center, the team introduced parmodulin-2 (PM2), an inflammation inhibitor, into the vascular channel of the device, and found that it significantly decreased the number of clots on the vessel wall following the addition of LPS to the airway channel. This confirmation of drug activity, as well as the insight that LPS causes thrombosis only by acting directly on the epithelium, would have been very difficult to achieve in vivo, as blood flow and individual cellular compartments cannot be controlled individually as they can in Organ Chips.

The team plans to continue their pulmonary thrombosis work by introducing mechanical forces that imitate breathing to the Chip and analyzing the role that immune cells such as neutrophils play in blood clot formation. "By including whole blood, we're reaching a new standard of complexity and precision for mimicking a human body in both health and disease," says Barrile. "This study affirms that we are recapitulating organ-level responses to lung injury, emphasizing that this is a true Organ-on-a-Chip, not just a tissue-on-a-chip," adds Ingber.
-end-
Andries D. van der Meer, Ph.D., former Senior Research Fellow at the Wyss Institute and current Assistant Professor at the MIRA Institute for Biomedical Technology and Technical Medicine, was the third co-author of this study. Additional authors include Akiko Mammoto, M.D., Ph.D., Instructor in the Vascular Biology Program at Boston Children's Hospital and HMS; Tadanori Mammoto, M.D., Ph.D., Instructor in Surgery at Boston Children's Hospital and HMS; Karen De Ceunynck, Ph.D., Postdoctoral Research Fellow at Beth Israel Deaconess Medical Center and HMS; Omozuanvbo Aisiku, Ph.D., former Postdoctoral Research Fellow at Beth Israel Deaconess Medical Center and HMS, currently a Scientist at Instrumentation Laboratory; Monicah A. Otieno, Ph.D., Senior Research Investigator at Bristol-Myers Squibb; Calvert S. Louden, D.V.M., Ph.D., Senior Director at Johnson & Johnson Pharmaceuticals; and Geraldine A. Hamilton, Ph.D., President and Chief Scientific Officer of Emulate, Inc.

This work was funded by DARPA contract N66001-11-1-4180, HR0011-13-C-0025, Janssen Pharmaceuticals, and the Wyss Institute for Biologically Inspired Engineering at Harvard University. Ingber and Hamilton are founders and hold equity in Emulate, Inc, and Ingber chairs its scientific advisory board; van der Meer serves as a scientific consultant to the company.

MULTIMEDIA AVAILABLE

PRESS CONTACT

Wyss Institute for Biologically Inspired Engineering at Harvard University
Lindsay Brownell, lindsay.brownell@wyss.harvard.edu, +1 617-432-8266

MULTIMEDIA CONTACT

Wyss Institute for Biologically Inspired Engineering at Harvard University
Seth Kroll, seth.kroll@wyss.harvard.edu, +1 617-432-7758

The Wyss Institute for Biologically Inspired Engineering at Harvard University (http://wyss.harvard.edu) uses Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing that are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and formation of new startups. The Wyss Institute creates transformative technological breakthroughs by engaging in high risk research, and crosses disciplinary and institutional barriers, working as an alliance that includes Harvard's Schools of Medicine, Engineering, Arts & Sciences and Design, and in partnership with Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Boston Children's Hospital, Dana-Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Boston University, Tufts University, Charité - Universitätsmedizin Berlin, University of Zurich and Massachusetts Institute of Technology.

Wyss Institute for Biologically Inspired Engineering at Harvard

Related Epithelial Cells Articles:

Epithelial GPS: Position of RNAi machinery is associated with epithelial identity
Researchers at the Medical University of South Carolina show in a new report that the RNA interference machinery, normally thought to reside in the nucleus or cytoplasm, predominantly localizes to these apical junctions and influences cell biology in the colon.
Nutrient deficiency in tumor cells attracts cells that suppress the immune system
A study led by IDIBELL researchers and published this week in the American journal PNAS shows that, by depriving tumor cells of glucose, they release a large number of signaling molecules.
Scientists modify CAR-T cells to target multiple sites on leukemia cells
In a preclinical study, scientists engineer new CAR-T cells to attack three sites on leukemia cells, instead of one.
Size matters: How cells pack in epithelial tissues
Small-cell clones in proliferating epithelia -- tissues that line all body surfaces -- organize very differently than their normal-sized counterparts, according to a recent study from the Stowers Institute for Medical Research.
Closing the gap -- a two-tier mechanism for epithelial barrier
Scientists from Japan's National Institute for Physiological Sciences and their collaborators report in a new study published in The Journal of Cell Biology that epithelial barrier is composed of two molecular systems with distinct barrier properties.
Dead cells disrupt how immune cells respond to wounds and patrol for infection
Immune cells prioritise the clearance of dead cells overriding their normal migration to sites of injury.
Revealed: How the 'Iron Man' of immune cells helps T cells fight infection
The immune system's killer T cells are crucial in fighting viral infections.
White blood cells related to allergies may also be harnessed to destroy cancer cells
A new Tel Aviv University study finds that white blood cells which are responsible for chronic asthma and modern allergies may be used to eliminate malignant colon cancer cells.
Conversion of breast cancer cells into fat cells impedes the formation of metastases
An innovative combination therapy can force malignant breast cancer cells to turn into fat cells.
Successful anti-PD-1 therapy requires interaction between CD8+ T cells and dendritic cells
A team led by a Massachusetts General Hospital investigator has found that successful cancer immunotherapy targeting the PD-1 molecule requires interaction between cytotoxic CD8+ T cells, which have been considered the primary therapeutic target, and dendritic cells, critical activators of T cell response.
More Epithelial Cells News and Epithelial Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.