Nav: Home

Cell division requires a balanced level of non-coding RNA for chromosome stability

May 22, 2019

Our genetic code is stored in chromosomes that are composed of DNA (deoxyribonucleic acid). To make sure the genetic code is maintained accurately in all the cells, our cells must replicate precisely and distribute its chromosomes equally to its two daughter cells during every cell cycle. Errors in chromosome separation result in cells with an abnormal number of chromosomes, which may cause spontaneous abortion, genetic diseases or cancers. One chromosomal element that is important for proper chromosome segregation is the centromere, a unique region of DNA on the chromosome that directs chromosome movement during cell division.

Assistant Professor Dr Karen Wing Yee Yuen and Postdoctoral Fellow Dr Yick Hin Ling from the School of Biological Sciences, University of Hong Kong (HKU), discovered that centromeric DNA is used as a template to produce a non-protein coding, centromeric RNA (ribonucleic acid), that is essential for chromosome stability. If there is too much or too little centromeric RNA (cenRNA), the centromere will be defective and chromosomes will be lost. The findings were recently published in one of the top multidisciplinary journals, Proceedings of the National Academy of Sciences of the United States of America (PNAS) https://www.pnas.org/content/early/2019/03/07/1821384116. This research article is recommended by F1000Prime, whose members selected approximately the top 2% of all published articles in the biology and medical sciences each year, and the recommended Faculty commented that this PNAS article is of special significance and an emerging frontier in the centromere biology field.

The DNA of our chromosomes codes for about 20,000 proteins. When the cell needs to produce a particular protein, such as insulin, the segment of DNA molecule coding for insulin, known as a gene, is first used as a template to copy into a RNA molecule. That RNA then serves as a recipe for directing the cells to make the specific protein. However, only 2% of our DNA is protein-coding. Yet, another 70% of our DNA is still copied into RNAs, which are not recipes to make proteins. Those are called non-coding RNA. These non-coding RNAs are once considered as "junk". In recent years, however, researches have revealed vital roles of non-coding RNA, such as in gene regulation and maintaining chromosome structure.

Dr Karen Wing Yee Yuen, who leads HKU's Chromosome Biology Laboratory in the School of Biological Sciences, said, "Our current study is performed in single-cell organism, the baker's yeast, but non-coding RNA copied from the DNA of the centromere is also found in multicellular organisms such as humans, mice and flies, suggesting that centromeric RNA (cenRNA) is a fundamentally important molecule that is commonly used by nature to control cell division."

Dr Yuen added, "Our lab often uses simple model organisms, including the soil-living microscopic roundworm and single-cell baker's yeast, which we also use for baking bread and making beer, to understand basic, important cellular processes. The mechanism of cell division is strikingly similar in many forms of life. These little organisms allow us to do experiments that are difficult to perform in humans or mammalian cells. Many applied, clinical researches began by studying the cellular processes in these model organisms. Important cell biology researches using yeast have been awarded Nobel Prize in Physiology or Medicine recently in 2013 and 2016."

The first author of the work, a former PhD student and current Postdoctoral Fellow Dr Yick Hin Ling from Dr Yuen's lab, said, "Recent research shows abnormally high expression of centromeric RNA in some cancers like ovarian cancers. Mis-regulation of cenRNA in the cell might contribute to cancer progression. Further study is required to test this." For disease diagnosis and therapies, Dr Ling said, "We will try to see if cenRNA could be used as a cancer biomarker. If the cancer cells release a high level of cenRNA to the blood, it could be used for early detection or for monitoring the malignancy of the tumor."
-end-
This research is supported by General Research Fund from Hong Kong Research Grants Council. For more information about Dr Karen Yuen's Chromosome Biology Laboratory at HKU, please visit: https://www.biosch.hku.hk/staff/wyy/wyy.html

For the video, please view at: https://drive.google.com/file/d/1kBISWA1-OmHiN8bVo0NZBs5N3CKw_v-U/view

The University of Hong Kong

Related Dna Articles:

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.