Nav: Home

Detecting bacteria in space

May 22, 2019

Scientists at Université de Montréal and McGill University have pioneered and tested a new genomic methodology which reveals a complex bacterial ecosystem at work on the International Space Station.

Their study is published today in Environmental Microbiology.

Until now, relatively little was known about the different types of microbes found on the space station. The new approach enables researchers to identify and map different species inside the ISS, which will ultimately help safeguard astronauts' health and be key to future long-term space travel.

It will also have applications in the realms of environmental management and health care.

"The new methodology provides us spectacular snapshots of the bacterial world in space and the possibilities of applying this method to explore new microbiome environments are really exciting," said Nicholas Brereton, a researcher at UdeM's Institut de recherche en biologie végétale.

The challenge of maintaining cleanliness within space environments was first documented on the Russian MIR space station, where conditions eventually deteriorated so much that mould became widespread. On the ISS, space agencies have been trying to reduce the amount of microbial growth in the station since it was first launched in 1998.

Strict cleaning and decontamination protocols are now in place to maintain a healthy ISS environment; in orbit, crew members regularly clean and vacuum the space station's living and working quarters. But as resupply missions arrive carrying a range of material including food, lab equipment, live plants and animals, new bacteria species are continually being added.

Combined with existing human bacteria, and also because no windows can be opened, the build-up of bacteria inside the cramped quarters can be significant.

"Scientists have a well-documented understanding of broad bacterial families on the ISS, but now we've discovered a more diverse bacterial ecosystem that we ever expected," said Emmanuel Gonzalez, a metagenomic specialist at McGill. "It's an exciting step forward in understanding the biosphere that will accompany humans into extra-terrestrial habitats."

Although the microbial characterization method was piloted in space, its applications will be far broader, say the scientists behind the technology. Researchers can replicate this approach to address many challenges and environments, including in oceans and soils It is already being applied to human diseases and microbiomes.
-end-
About the study

"ANCHOR: a 16S rRNA gene amplicon pipeline for microbial analysis of multiple environmental samples," by Nicholas Brereton, Emmanuel Gonzales and Frédéric Pitre, was published May 22, 2019 in Environmental Microbiology. The study was conducted by meta-genomics and bioinformatics scientists at Université de Montréal's Institut de recherche en biologie végétale at the Montreal Botanical Garden (part of Space for Life), and at the Canadian Centre for Computational Genomics, McGill University and the Genome Quebec Innovation Centre.

University of Montreal

Related Health Articles:

Public health guidelines aim to lower health risks of cannabis use
Canada's Lower-Risk Cannabis Use Guidelines, released today with the endorsement of key medical and public health organizations, provide 10 science-based recommendations to enable cannabis users to reduce their health risks.
Generous health insurance plans encourage overtreatment, but may not improve health
Offering comprehensive health insurance plans with low deductibles and co-pay in exchange for higher annual premiums seems like a good value for the risk averse, and a profitable product for insurance companies.
The Lancet Planetary Health: Food, climate, greenhouse gas emissions and health
Increasing temperatures, water scarcity, availability of agricultural land, biodiversity loss and climate change threaten to reverse health gains seen over the last century.
With health insurance at risk, community health centers face cut-backs
Repeal of key provisions of the Affordable Care Act, combined with a failure to renew critical funding streams, would result in catastrophic funding losses for community health centers-forcing these safety net providers to cut back on services, lay off staff or shut down clinical sites, according to a report published today.
Study clusters health behavior groups to broaden public health interventions
A new study led by a University of Kansas researcher has used national health statistics and identified how to cluster seven health behavior groups based on smoking status, alcohol use, physical activity, physician visits and flu vaccination are associated with mortality.
More Health News and Health Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...