Nav: Home

Massive sequencing study links rare DNA alterations to type 2 diabetes

May 22, 2019

An international consortium of scientists has analyzed protein-coding genes from nearly 46,000 people, linking rare DNA alterations to type 2 diabetes. The study, one of the largest known of its type, includes data from people of European, African American, Hispanic/Latino, East Asian, and South Asian ancestries.

From this large cohort--roughly 21,000 individuals with type 2 diabetes and 25,000 healthy controls--the researchers identified four genes with rare variants that affect diabetes risk. The data suggests that hundreds more genes will likely be identified in the future.

These genes and the proteins they encode are potential targets for new medicines, and may guide researchers to better understand and treat disease.

All of the team's results are publicly available online through the Type 2 Diabetes Knowledge Portal, enabling scientists around the world to access and use the information for their own research.

"These results demonstrate the importance of studying large samples of individuals from a wide range of ancestries," said senior study author Michael Boehnke, professor of biostatistics and director of the Center for Statistical Genetics at the University of Michigan School of Public Health. "Most large population studies focus on individuals of European ancestry, and that can make it hard to generalize the results globally. The more diverse the cohort makes for better, more informative science."

"We now have an updated picture of the role of rare DNA variations in diabetes," said Jason Flannick, first author on the study. "These rare variants potentially provide a much more valuable resource for drug development than previously thought. We can actually detect evidence of their disease association in many genes that could be targeted by new medications or studied to understand the fundamental processes underlying disease." Flannick is an assistant professor of pediatrics at Harvard Medical School and the Division of Genetics and Genomics at Boston Children's Hospital, and an associate member of the Broad Institute of MIT and Harvard.

Other senior authors include Mark McCarthy, professor of diabetic medicine at the University of Oxford, and Jose Florez, chief of the endocrine division and diabetes unit at Massachusetts General Hospital, a professor of medicine at Harvard Medical School, and director of the diabetes research group at the Broad Institute.

The study was published today in Nature.

A GLOBAL CONCERN

According to statistics from the World Health Organization, over 400 million people worldwide have diabetes. The vast majority of these cases are type 2. Diabetes is estimated to be the seventh leading cause of death globally. While researchers have known that lifestyle and environmental factors play a huge role in type 2 diabetes, it is essential to gain a deeper understanding of the biological mechanisms that drive the condition.

For this study, the researchers sequenced what's called the "exome," that is, only those regions in the genome that code for proteins.

Another approach to finding disease-associated variants is called a genome wide association study, or GWAS. This approach can be very effective for finding common-disease variants throughout the entire genome, but can miss the less-common exome variants. And this is key, because while rare exome variants are extremely hard to detect, they can provide invaluable insight into disease-related genes, which in turn can suggest new drug targets.

For this reason, the researchers aim to increase sample sizes in future studies. With a cohort of almost 50,000, this may be the largest exome sequencing study of type 2 diabetes, but as the authors state in the paper, sample sizes ranging between 75,000 and 185,000 cases may be needed to identify even those rare variants with the largest impact.

"It's critical to remember that just because we are examining variants in protein-coding DNA, we don't get a break on the number of samples needed to detect a significant effect," says Jose Florez. "The effects of these variations can be powerful, but because they are so rare, we still need to increase the sample size in order to really derive compelling insights."
-end-
Funding for this study included support from the National Institute of Diabetes and Digestive and Kidney Diseases, the National Human Genome Research Institute, and the Slim Initiative in Genomic Medicine for the Americas (SIGMA), a joint U.S.-Mexico project funded by the Carlos Slim Foundation.

University of Michigan

The University of Michigan, founded in 1817, includes 19 schools and colleges with liberal arts, sciences and professional studies. Enrollment of undergraduate, graduate and professional students is more than 43,000 with 3,000-plus faculty members. The broad scope and overall size of U-M's research program, along with an emphasis on interdisciplinary approaches, contributes to Michigan's standing as one of the world's leading research universities.

About the Broad Institute of MIT and Harvard

Broad Institute of MIT and Harvard was launched in 2004 to empower this generation of creative scientists to transform medicine. The Broad Institute seeks to describe all the molecular components of life and their connections; discover the molecular basis of major human diseases; develop effective new approaches to diagnostics and therapeutics; and disseminate discoveries, tools, methods, and data openly to the entire scientific community.

Founded by MIT, Harvard, Harvard-affiliated hospitals, and the visionary Los Angeles philanthropists Eli and Edythe L. Broad, the Broad Institute includes faculty, professional staff, and students from throughout the MIT and Harvard biomedical research communities and beyond, with collaborations spanning over a hundred private and public institutions in more than 40 countries worldwide. For further information about the Broad Institute, go tohttp://www.broadinstitute.org.

Broad Institute of MIT and Harvard

Related Diabetes Articles:

The role of vitamin A in diabetes
There has been no known link between diabetes and vitamin A -- until now.
Can continuous glucose monitoring improve diabetes control in patients with type 1 diabetes who inject insulin
Two studies in the Jan. 24/31 issue of JAMA find that use of a sensor implanted under the skin that continuously monitors glucose levels resulted in improved levels in patients with type 1 diabetes who inject insulin multiple times a day, compared to conventional treatment.
Complications of type 2 diabetes affect quality of life, care can lead to diabetes burnout
T2D Lifestyle, a national survey by Health Union of more than 400 individuals experiencing type 2 diabetes (T2D), reveals that patients not only struggle with commonly understood complications, but also numerous lesser known ones that people do not associate with diabetes.
Type 2 diabetes and obesity -- what do we really know?
Social and economic factors have led to a dramatic rise in type 2 diabetes and obesity around the world.
A better way to predict diabetes
An international team of researchers has discovered a simple, accurate new way to predict which women with gestational diabetes will develop type 2 diabetes after delivery.
More Diabetes News and Diabetes Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...