Nav: Home

Spatial DNA organization forms first, then the rest

May 22, 2019

The fundamental organization of the DNA in active and inactive compartments arises immediately after fertilization of the oocyte, even before genes are activated. This was discovered by researchers from the Hubrecht Institute and the Helmholtz Center Munich and will lead to a better understanding of the mechanisms behind the development of a single fertilized oocyte into a complete organism that consists of many different cell types. The results were published in the scientific journal Nature on the 22nd of May.

From fertilized oocyte to complete organism

A fertilized oocyte, a zygote, eventually develops into a whole organism that consists of trillions of cells with a wide diversity of functions. Despite these various functions, the DNA in all of these cells is the same. The identity of cells is determined by sets of genes that are turned 'on' and 'off'. But how do all of these cells organize which genes are turned 'on' and 'off'?

DNA organization in the nucleus

The DNA is not just haphazardly deposited into the nucleus of the cell, but instead spatially organized in active and inactive compartments. The compartments that are not active are tethered to the edge of the round shaped nucleus. This edge consists of a thin layer that is called the lamina, and these DNA compartments are therefore called Lamina Associated Domains, or LADs. "You can compare the DNA that is divided into LADs and inter-LADs to a very long garland, that is not tangled up on the floor of the living room, but instead attached to the ceiling at anchor points," says Jop Kind, group leader at the Hubrecht Institute. "This results in a spatially organized chromosome-partitioning that makes the untethered parts (the inter-LADs) more accessible for activation compared to the parts that are tethered to the ceiling (the LADs)." In cells with different functions, different parts of the DNA are tethered to the lamina, although there are certain LADs that are present in all cell types.

New method

Different cell types thus differ in the sets of genes that are turned 'on' and 'off' and which parts of the DNA are tethered to the lamina. Until now it was unclear which of these characteristics occurs first in the cell. The researchers therefore developed a new method through which they could analyze the organization of the DNA in LADs and inter-LADs very early in the development of an embryo. They did this at different timepoints, from the early zygote, even before genes are activated in the embryo, until the moment at which the embryo consists of eight cells.

Which characteristic forms first?

The researchers discovered that the DNA in the zygote is already organized in LADs and inter-LADs before genes are activated in the embryo. LADs are therefore formed before the activity of genes starts to play a role. In addition, the researchers found that the activity of genes during the development of an embryo changes in accordance with changes in the LAD structure. Therefore, it seems that organizing the DNA into LADs and inter-LADs is a very early event in a process that eventually leads to the identity of a cell.

Primitive LADs

The LADs that were found in the early zygote turned out to very closely match the LADs that are present in all cell types. In addition, these LADs match the LADs in the so-called "pluripotent stem cells", stem cells that can still develop into all cell types of the embryo. "The LADs in the zygote therefore seem to be 'primitive' LADs," says Kind, "some sort of basic suspension system in the cell nucleus that can be built upon when the cell specializes."

Future

The newly developed method and its first results show that this approach can be used to further investigate the mechanisms involved in the formation of an entire organism from a single fertilized oocyte. In the future this will lead to a better understanding of normal development, but will also give more insights in what can go wrong during the development of an embryo.
-end-
Publication

Genome-lamina interactions are established de novo in the early mouse embryo. Máté Borsos*, Sara M. Perricone*, Tamás Schauer, Julien Pontabry, Kim L. de Luca, Sandra S. de Vries, Elias R. Ruiz-Morales, Maria-Elena Torres-Padilla**en Jop Kind**. Nature, 2019.
*equal contribution, **co-senior authors

Jop Kind is group leader at the Hubrecht Institute and Oncode Investigator.

Maria-Elena Torres-Padilla is group leader and director of the Institute of Epigenetics and Stem Cells (IES), Helmholtz Center Munich and professor of Stem cell biology at the Ludwig-Maximilians University.

About the Hubrecht Institute

The Hubrecht Institute is a research institute focused on developmental and stem cell biology. It encompasses 24 research groups that perform fundamental and multidisciplinary research, both in healthy systems and disease models. The Hubrecht Institute is a research institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), situated on the Utrecht Science Park. Since 2008, the institute is affiliated with the UMC Utrecht, advancing the translation of research to the clinic. The Hubrecht Institute has a partnership with the European Molecular Biology Laboratory (EMBL). For more information, visit http://www.hubrecht.eu.

About the Helmholtz Zentrum München

As German Research Center for Environmental Health, Helmholtz Zentrum München pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes mellitus and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München has about 2,300 staff members and is headquartered in Neuherberg in the north of Munich. Helmholtz Zentrum München is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. www.helmholtz-muenchen.de

Note for the press

For more information, please contact Melanie Fremery, the communications officer of the Hubrecht Institute: m.fremery@hubrecht.eu or 0031658911260 (between during 9:00AM and 6:00PM Dutch time). Between the 24th and the 30th of May she will be unavailable, during this period you can contact Jop Kind: j.kind@hubrecht.eu and 0031302121800.

Hubrecht Institute

Related Stem Cells Articles:

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
TSRI researchers identify gene responsible for mesenchymal stem cells' stem-ness'
Researchers at The Scripps Research Institute recently published a study in the journal Cell Death and Differentiation identifying factors crucial to mesenchymal stem cell differentiation, providing insight into how these cells should be studied for clinical purposes.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.