Nav: Home

Defects in cellular antennae can cause a common heart condition

May 22, 2019

Katelynn Toomer and colleagues have discovered that defects in tiny, hair-like cellular structures can lead to mitral valve prolapse (MVP), a common heart disorder that affects up to one in 40 people worldwide. Their findings - based on a genetic analysis of a multigenerational family with an inherited form of the disease - identify a potential underlying cause of this widespread but little-understood condition. MVP usually causes only mild symptoms in patients, but in some cases it can result in abnormal heart rhythm and loss of heart function. Despite the disease's prevalence, scientists do not yet fully understand why MVP occurs or how it unfolds in the heart. In this study, Toomer et al. tracked the development of human and mouse mitral valves and discovered that a loss of cilia - antenna-like structures that receive signals from outside a cell - in valve tissue caused congenital defects that mirrored those seen in patients with MVP. They also studied gene expression in a multigenerational family (43 members), 11 of whom had an inherited form of MVP, as well as data from a previous genetic study of 1,412 MVP cases. The analysis revealed that the patients with MVP harbored a mutation in a gene named DZIP1 that normally guides proper cilia growth. Further experiments showed that mouse pups lacking DZIP1 displayed impaired formation of cilia during their development, which was followed by MVP and valve defects later in life. The study's insights into the genetic and cellular origins of MVP could facilitate the design of drug-based interventions for the condition, which can currently only be treated with surgery.
-end-


American Association for the Advancement of Science

Related Cilia Articles:

Unraveling mechanisms of ventricular enlargement linked to schizophrenia
Scientists at St. Jude Children's Research Hospital have implicated two microRNAs in the biological processes that underlie the ventricle enlargement observed in models of schizophrenia.
How cells learn to 'count'
One of the wonders of cell biology is its symmetry.
Scientists show how tiny, mutated neuron antennae impair brain connectivity
Axons are the long thread-like extensions of neurons that send electrical signals to other brain cells.
Downstream signaling: Cilia release ectosomes to deliver important messages in the kidney
Primary cilia are found on nearly all cell types and serve an important role in sensing external mechanical and chemical signals, likely through extracellular vesicles (EV) called ectosomes.
Zooming into cilia sheds light into blinding diseases
A new study reveals an unprecedented close-up view of cilia linked to blindness.
Structural protein essential for ciliary harmony in comb jellies
Researchers from the University of Tsukuba and the Japanese National Institute for Basic Biology identified a structural protein that is essential for the coordinated beating of millions of tiny cilia on the surface of comb jellies.
Defective cilia linked to heart valve birth defects
Bicuspid aortic valve (BAV), the most common heart valve birth defect, is associated with genetic variation in human primary cilia during heart valve development, report Medical University of South Carolina researchers in Circulation.
Defects in heart valve cilia during fetal development cause mitral valve prolapse
Genetic mutations in heart valve cells of the developing fetus lead to mitral valve prolapse, report a global collaborative of researchers, including Medical University of South Carolina investigators, in today's Science Translational Medicine.
Defects in cellular antennae can cause a common heart condition
Katelynn Toomer and colleagues have discovered that defects in tiny, hair-like cellular structures can lead to mitral valve prolapse (MVP), a common heart disorder that affects up to one in 40 people worldwide.
Making waves: Researchers shed light on how cilia work
An interdisciplinary team of researchers from the McKelvey School of Engineering and the School of Medicine have found the most efficient length for cilia, the tiny hair-like structures designed to sweep out the body's fluids, cells and microbes to stay healthy.
More Cilia News and Cilia Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.