Nav: Home

Galaxies as 'cosmic cauldrons'

May 22, 2019

Star formation within interstellar clouds of gas and dust, so-called molecular clouds, proceeds very rapidly yet highly "inefficiently". Most of the gas is dispersed by stellar radiation, revealing galaxies to be highly dynamic systems, like "cosmic cauldrons", consisting of components that constantly change their appearance. Based on new observations of the NGC 300 spiral galaxy, a team of scientists led by astrophysicist Dr Diederik Kruijssen from Heidelberg University has now managed for the first time to reconstruct the time-evolution of molecular clouds and the star formation process within them. Their analysis shows that these clouds are short-lived structures undergoing rapid lifecycles, driven by the intense radiation from the new-born stars. The findings were published in "Nature".

The observed intensity of star formation in the NGC 300 spiral galaxy can be explained in two ways. Molecular clouds may be very long-lived and eventually convert all of their mass into stars. In this case, the positions of young stars should generally match those of the molecular clouds from which they formed. Alternatively, stars may form very rapidly within molecular clouds and disperse the gas with their intense radiation, causing only a small fraction of the gas to be converted into stars. In this case, young stars and molecular clouds should generally reside in different locations.

To decide which of these models of the molecular cloud lifecycle is correct, Dr Kruijssen and his team combined two different sets of observations of the NGC 300 galaxy, which is about six million light years away from the Milky Way. The first observation is a map of light emitted by carbon monoxide which shows where molecular clouds reside. The second is a map of hot, ionised hydrogen which marks the positions of massive, newly formed stars. These maps were obtained using the Atacama Large Millimeter Array (ALMA) of the European Southern Observatory (ESO) and the 2.2-meter telescope of the Max Planck Society and ESO. The ALMA observations were carried out by Dr Andreas Schruba, scientist at the Max Planck Institute for Extraterrestrial Physics in Garching and one of the co-authors of the study. The scientists analysed the data using a new statistical method which determines how molecular gas and star formation in galaxies are related on different spatial scales. For the first time, this method enables the positions of molecular clouds and young stars to be precisely quantified relative to one another.

According to the scientists, the results left no doubt: the positions of molecular clouds and young, massive stars rarely coincide. This effect becomes stronger on smaller scales. The scientists conclude that stars form very rapidly, such that gas and young stars represent distinct, subsequent phases in the lifecycle of molecular clouds. "Our findings demonstrate that star formation proceeds very rapidly and highly inefficiently," explains Dr Kruijssen, research group leader at the Institute for Astronomical Computing. "Molecular clouds in NGC 300 live for about ten million years and take only about 1.5 million years to be destroyed, well before the most massive stars have reached the end of their lives and explode as supernovae." Dr Mélanie Chevance, a researcher in his team and also co-author of the paper, adds: "The intense radiation from young stars disperses their parent molecular cloud by heating it and dispersing it in the form of hot interstellar gas bubbles. This way, only two to three percent of the mass in molecular clouds is actually converted into stars."

The team of researchers now wants to apply their new statistical method to observations of very distant galaxies to infer how star formation in molecular clouds proceeded across the history of the Universe. "We will now proceed to investigate the relation between molecular clouds and young stars in galaxies throughout the cosmos. In the near future, this will allow us to understand galaxies as collections of components that undergo star formation-driven lifecycles and together shape the appearance of their host galaxies," explains Dr Kruijssen.

The research was conducted in collaboration with researchers from the United Kingdom, the United States, and the Netherlands. The work was funded by the German Research Foundation (DFG) and the European Research Council (ERC).
-end-


University of Heidelberg

Related Star Formation Articles:

Massive exoplanet orbiting tiny star challenges planet formation theory
Astronomers have discovered a giant Jupiter-like exoplanet in an unlikely location -- orbiting a small red dwarf star.
ALMA pinpoints the formation site of planet around nearest young star
Researchers using ALMA (Atacama Large Millimeter/submillimeter Array) found a small dust concentration in the disk around TW Hydrae, the nearest young star.
Star formation burst in the Milky Way 2-3 million years ago
A team led by researchers of the Institute of Cosmos Sciences of the University of Barcelona and the Besançon Astronomical Observatory have found, analysing data from the Gaia satellite, that a severe star formation burst occurred in the Milky Way about to and three thousand million years ago.
The rise and fall of Ziggy star formation and the rich dust from ancient stars
Researchers have detected a radio signal from abundant interstellar dust in MACS0416_Y1, a galaxy 13.2 billion light-years away in the constellation Eridanus.
Lifting the veil on star formation in the Orion Nebula
Writing in 'Nature', an international research team including astronomers from Cologne describe their discovery that stellar wind from a newborn star in the Orion Nebula is preventing more stars from forming nearby.
More Star Formation News and Star Formation Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...