Nav: Home

Galaxies as 'cosmic cauldrons'

May 22, 2019

Star formation within interstellar clouds of gas and dust, so-called molecular clouds, proceeds very rapidly yet highly "inefficiently". Most of the gas is dispersed by stellar radiation, revealing galaxies to be highly dynamic systems, like "cosmic cauldrons", consisting of components that constantly change their appearance. Based on new observations of the NGC 300 spiral galaxy, a team of scientists led by astrophysicist Dr Diederik Kruijssen from Heidelberg University has now managed for the first time to reconstruct the time-evolution of molecular clouds and the star formation process within them. Their analysis shows that these clouds are short-lived structures undergoing rapid lifecycles, driven by the intense radiation from the new-born stars. The findings were published in "Nature".

The observed intensity of star formation in the NGC 300 spiral galaxy can be explained in two ways. Molecular clouds may be very long-lived and eventually convert all of their mass into stars. In this case, the positions of young stars should generally match those of the molecular clouds from which they formed. Alternatively, stars may form very rapidly within molecular clouds and disperse the gas with their intense radiation, causing only a small fraction of the gas to be converted into stars. In this case, young stars and molecular clouds should generally reside in different locations.

To decide which of these models of the molecular cloud lifecycle is correct, Dr Kruijssen and his team combined two different sets of observations of the NGC 300 galaxy, which is about six million light years away from the Milky Way. The first observation is a map of light emitted by carbon monoxide which shows where molecular clouds reside. The second is a map of hot, ionised hydrogen which marks the positions of massive, newly formed stars. These maps were obtained using the Atacama Large Millimeter Array (ALMA) of the European Southern Observatory (ESO) and the 2.2-meter telescope of the Max Planck Society and ESO. The ALMA observations were carried out by Dr Andreas Schruba, scientist at the Max Planck Institute for Extraterrestrial Physics in Garching and one of the co-authors of the study. The scientists analysed the data using a new statistical method which determines how molecular gas and star formation in galaxies are related on different spatial scales. For the first time, this method enables the positions of molecular clouds and young stars to be precisely quantified relative to one another.

According to the scientists, the results left no doubt: the positions of molecular clouds and young, massive stars rarely coincide. This effect becomes stronger on smaller scales. The scientists conclude that stars form very rapidly, such that gas and young stars represent distinct, subsequent phases in the lifecycle of molecular clouds. "Our findings demonstrate that star formation proceeds very rapidly and highly inefficiently," explains Dr Kruijssen, research group leader at the Institute for Astronomical Computing. "Molecular clouds in NGC 300 live for about ten million years and take only about 1.5 million years to be destroyed, well before the most massive stars have reached the end of their lives and explode as supernovae." Dr Mélanie Chevance, a researcher in his team and also co-author of the paper, adds: "The intense radiation from young stars disperses their parent molecular cloud by heating it and dispersing it in the form of hot interstellar gas bubbles. This way, only two to three percent of the mass in molecular clouds is actually converted into stars."

The team of researchers now wants to apply their new statistical method to observations of very distant galaxies to infer how star formation in molecular clouds proceeded across the history of the Universe. "We will now proceed to investigate the relation between molecular clouds and young stars in galaxies throughout the cosmos. In the near future, this will allow us to understand galaxies as collections of components that undergo star formation-driven lifecycles and together shape the appearance of their host galaxies," explains Dr Kruijssen.

The research was conducted in collaboration with researchers from the United Kingdom, the United States, and the Netherlands. The work was funded by the German Research Foundation (DFG) and the European Research Council (ERC).
-end-


University of Heidelberg

Related Star Formation Articles:

Star formation project maps nearby interstellar clouds
Astronomers have captured new, detailed maps of three nearby interstellar gas clouds containing regions of ongoing high-mass star formation.
Scientists discover pulsating remains of a star in an eclipsing double star system
Scientists from the University of Sheffield have discovered a pulsating ancient star in a double star system, which will allow them to access important information on the history of how stars like our Sun evolve and eventually die.
Distant milky way-like galaxies reveal star formation history of the universe
Thousands of galaxies are visible in this radio image of an area in the Southern Sky, made with the MeerKAT telescope.
Cascades of gas around young star indicate early stages of planet formation
What does a gestating baby planet look like? New research in Nature by a team including Carnegie's Jaehan Bae investigated the effects of three planets in the process of forming around a young star, revealing the source of their atmospheres.
Massive exoplanet orbiting tiny star challenges planet formation theory
Astronomers have discovered a giant Jupiter-like exoplanet in an unlikely location -- orbiting a small red dwarf star.
ALMA pinpoints the formation site of planet around nearest young star
Researchers using ALMA (Atacama Large Millimeter/submillimeter Array) found a small dust concentration in the disk around TW Hydrae, the nearest young star.
Star formation burst in the Milky Way 2-3 million years ago
A team led by researchers of the Institute of Cosmos Sciences of the University of Barcelona and the Besançon Astronomical Observatory have found, analysing data from the Gaia satellite, that a severe star formation burst occurred in the Milky Way about to and three thousand million years ago.
The rise and fall of Ziggy star formation and the rich dust from ancient stars
Researchers have detected a radio signal from abundant interstellar dust in MACS0416_Y1, a galaxy 13.2 billion light-years away in the constellation Eridanus.
Lifting the veil on star formation in the Orion Nebula
Writing in 'Nature', an international research team including astronomers from Cologne describe their discovery that stellar wind from a newborn star in the Orion Nebula is preventing more stars from forming nearby.
Massive star's unusual death heralds the birth of compact neutron star binary
Carnegie's Anthony Piro was part of a Caltech-led team of astronomers who observed the peculiar death of a massive star that exploded in a surprisingly faint and rapidly fading supernova, possibly creating a compact neutron star binary system.
More Star Formation News and Star Formation Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.