Nav: Home

Robots activated by water may be the next frontier

May 22, 2019

New research from the laboratory of Ozgur Sahin, associate professor of biological sciences and physics at Columbia University, shows that materials can be fabricated to create soft actuators--devices that convert energy into physical motion--that are strong and flexible, and, most important, resistant to water damage.

"There's a growing trend of making anything we interact with and touch from materials that are dynamic and responsive to the environment," Sahin says. "We found a way to develop a material that is water-resistant yet, at the same time, equipped to harness water to deliver the force and motion needed to actuate mechanical systems."

The research was published online May 21 in Advanced Materials Technologies.

Most traditional robotic systems are hard, that is, composed of metallic structures that require a computer to function. Soft robots are created with materials that don't use a rigid skeleton or electricity to provide mechanical strength. They are simpler to make and less expensive than hard robots, more capable of complex motions and safer to use around humans.

The material developed by the Columbia researchers is made of a novel combination of spores--units produced by bacteria that are often used as food supplements--and adhesives. They provide an alternative to materials, such as synthetic polymers, commonly used in hard actuators and are better than the gels more generally used in soft actuators. Compared to the new material, gels are slower to respond, cannot generate high power or force and usually fail in direct contact with water.

Although the individual spores are water-resistant, they are so tiny that they must be bound together via a photochemical process in which high-intensity light instantly glues them together into a composite material. The researchers employ an inexpensive, commercially available UV light that is used in salons to cure nail polish.

Once dry, the material is stacked in layers to form a microscopic structure that expands or contracts with humidity or moisture, producing the force and motion of mechanical work.

"It's like making sheets or surfaces from sand," says postdoctoral research scientist Onur Cakmak, lead author of the study and a member of the research team. "The material is very granular."

Guided by the pattern design, the porous composite can bend, fold and unfold in response to humidity or water. This gives the soft actuators agility and adaptability to their surroundings, much like organisms in nature. The ability to be patterned, says Cakmak, "is essential if you want to make useful systems out of these materials."

Sahin sees many potential applications for the new material, from practical items to artistic creations. Actuators made from the water-resistant, humidity-responsive composite could be used to open a building's windows when the humidity rises too high. The material could also be added to fabric in athletic clothing to help sweat evaporate faster. "We're providing material for designers to work with and get their ideas realized quickly," Sahin says.

Applications meant to function for years still need further testing, he adds, but those designed for shorter periods might already be ready for use.

"As we work on this, we also learn many other possible uses, some related to design and others to materials that could be part of the products around us," says Sahin. "Those could be places where the impact of this could be sooner."
-end-


Columbia University

Related Water Articles:

Something in the water
Between 2015 and 2016, Brazil suffered from an epidemic outbreak of the Zika virus, whose infections occurred throughout the country states.
Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.
The shape of water: What water molecules look like on the surface of materials
Water is a familiar substance that is present virtually everywhere.
Water, water everywhere -- and it's weirder than you think
Researchers at The University of Tokyo show that liquid water has 2 distinct molecular arrangements: tetrahedral and non-tetrahedral.
What's in your water?
Mixing drinking water with chlorine, the United States' most common method of disinfecting drinking water, creates previously unidentified toxic byproducts, says Carsten Prasse from Johns Hopkins University and his collaborators from the University of California, Berkeley and Switzerland.
How we transport water in our bodies inspires new water filtration method
A multidisciplinary group of engineers and scientists has discovered a new method for water filtration that could have implications for a variety of technologies, such as desalination plants, breathable and protective fabrics, and carbon capture in gas separations.
Source water key to bacterial water safety in remote Northern Australia
In the wet-dry topics of Australia, drinking water in remote communities is often sourced from groundwater bores.
Our water cycle diagrams give a false sense of water security
Pictures of the earth's water cycle used in education and research throughout the world are in urgent need of updating to show the effects of human interference, according to new analysis by an international team of hydrology experts.
Water management helped by mathematical model of fresh water lenses
In this paper, the homeostasis of water lenses was explained as an intricate interaction of the following physical factors: infiltration to the lens from occasional (sporadic) rains, permanent evaporation from the water table, buoyancy due to a density contrast of the fresh and saline water, and the force of resistance to water motion from the dune sand.
The age of water
Groundwater in Egypt's aquifers may be as much as 200,000 years old and that's important to know as officials in that country seek to increasing the use of groundwater, especially in the Eastern Desert, to mitigate growing water stress and allow for agricultural projects.
More Water News and Water Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.