Researchers identify therapeutic targets to prevent cancer-associated muscle loss

May 22, 2020

Researchers at the University of Nebraska Medical Center have identified a key cell signaling pathway that drives the devastating muscle loss, or cachexia, suffered by many cancer patients. The study, which will be published May 22 in the Journal of Experimental Medicine, suggests that targeting this pathway with a drug already in phase 2 clinical trials for diabetes could prevent this syndrome.

Cachexia reduces patients' response to chemotherapy and can eventually result in respiratory or cardiac failure. It is thought to be the direct cause of death in up to one third of cancer patients. "However, there are no FDA-approved drugs to mitigate cancer-induced cachexia," says Pankaj K. Singh, a professor from The Eppley Institute for Research in Cancer and Allied Diseases at the University of Nebraska Medical Center, Omaha. "There is therefore an urgent need to find more effective therapeutic targets against cancer cachexia."

Muscle loss is particularly prevalent in patients with pancreatic cancer. Singh and colleagues found that the muscles of pancreatic cancer patients undergoing cachexia produce lower amounts of an enzyme called SIRT1. SIRT1 production was also reduced in mice with pancreatic cancer, and the researchers found that they could prevent these animals from undergoing cachexia by restoring the levels of this enzyme to normal.

Singh and colleagues determined that loss of SIRT1 causes muscle cells to produce increased amounts of an enzyme called NOX4 that generates toxic reactive oxygen species capable of inducing muscle degeneration. Treating mice with GKT137831, a drug that inhibits the NOX4 enzyme, prevented muscle loss and extended the life of mice with pancreatic cancer.

NOX4 levels were also elevated in patients undergoing pancreatic cancer­-induced cachexia, suggesting that GKT137831, which is already in phase 2 clinical trials for diabetes and primary biliary cholangitis, could also be used to treat cancer-associated muscle loss.

"Our study establishes the role of the SIRT1-NOX4 axis in mediating cancer cachexia and demonstrate the possibility of targeting this pathway to treat this devastating syndrome," Singh says. "NOX4 activity is also elevated in muscular dystrophy and other muscle-wasting disorders, suggesting that GKT137831 could be effective in treating muscle loss induced by a variety of pathologies, a possibility that warrants further investigation."
-end-
Dasgupta et al., 2020. J. Exp. Med.https://rupress.org/jem/article-lookup/doi/10.1084/jem.20190745?PR

 

About the Journal of Experimental Medicine

The Journal of Experimental Medicine (JEM) features peer-reviewed research on immunology, cancer biology, stem cell biology, microbial pathogenesis, vascular biology, and neurobiology. All editorial decisions are made by research-active scientists in conjunction with in-house scientific editors. JEM makes all of its content free online no later than six months after publication. Established in 1896, JEM is published by Rockefeller University Press. For more information, visit jem.org.

Visit our Newsroom, and sign up for a weekly preview of articles to be published. Embargoed media alerts are for journalists only.

Follow JEM on Twitter at @JExpMed and @RockUPress.

Rockefeller University Press

Related Diabetes Articles from Brightsurf:

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Diabetes, but not diabetes drug, linked to poor pregnancy outcomes
New research indicates that pregnant women with pre-gestational diabetes who take metformin are at a higher risk for adverse pregnancy outcomes -- such as major birth defects and pregnancy loss -- than the general population, but their increased risk is not due to metformin but diabetes.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.