Nav: Home

When predictions of theoretical chemists become reality

May 22, 2020

For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other complex structures by shaping 2D layers into the desired forms. Thomas Heine, Professor for Theoretical Chemistry at TU Dresden, is working on the prediction of such innovative materials. Their properties can be precisely calculated using modern methods of computational chemistry, even before they have been realized in the laboratory.

This research is particularly interesting for 2D polymers: their lattice type is defined by the shape of their building blocks, and those can be selected from the almost infinite variety of plane organic molecules which match the required structure. A particularly interesting example is the kagome lattice, which consists of the corners and edges of a trihexagonal tiling. In 2019, Yu Jing and Thomas Heine proposed to synthesize such 2D polymers from triangular organic molecules (so-called triangulenes). These materials have a combined honeycomb-kagome structure (see figure). Their calculations suggest that these 2D structures combine the properties of graphene (quasi massless charge carriers) with those of superconductors (flat electronic bands).

Now the Italian materials scientist Giorgio Contini and his international team have succeeded in synthesizing this 2D honeycomb kagome polymer, as published in Nature Materials earlier this week. An innovative surface synthesis method made it possible to produce crystals of such high quality that they were suitable for the experimental characterization of electronic properties. Indeed, the predicted fascinating topological properties were revealed. Thus, for the first time, it could be experimentally proven that topological materials can be realized via 2D polymers.

Research on 2D polymers is thus placed on a solid basis. The kagome lattice described here is only one example out of hundreds of possibilities to connect plane molecules to regular lattices. For some of these variants, other interesting electronic properties have already been predicted theoretically. This opens up numerous new possibilities for theorists and experimentalists in chemistry and physics to develop materials with previously unknown properties.

For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Prof. Heine explains: "These results show that 2D polymers can be materials with useful electronic properties, although their structures are much more wide-meshed than regular electronic materials, with distances of more than one nanometer between the lattice points. The prerequisite is that the materials are of excellent structural quality. This includes a high crystallinity and a very low defect density. Another important contribution of the colleagues around Prof. Contini is that, although the 2D polymers were produced on a metal surface, they can be detached and transferred to any other substrate, such as silicon oxide or mica, and thus be incorporated into electronic devices".
-end-
Original publication: Yu Jing and Thomas Heine. "Making 2D Topological Polymers a reality" Nature Materials.

Technische Universität Dresden

Related Polymers Articles:

Structural colors from cellulose-based polymers
A surface displays structural colors when light is reflected by tiny, regular structural elements in a transparent material.
Growing polymers with different lengths
ETH researchers have developed a new method for producing polymers with different lengths.
Exciting new developments for polymers made from waste sulfur
Researchers at the University of Liverpool are making significant progress in the quest to develop new sulfur polymers that provide an environmentally friendly alternative to some traditional petrochemical based plastics.
Polymers can fine-tune attractions between suspended nanocubes
In new research published in EPJ E, researchers demonstrate a high level of control over a type of colloid in which the suspended particles take the form of hollow, nanoscale cubes.
Functional polymers to improve thermal stability of bioplastics
One of the key objectives for contemporary chemistry is to improve thermomechanical properties of polymers, in particular, thermostability of bioplastics.
Fluorescent technique brings aging polymers to light
Modern society relies on polymers, such as polypropylene or polyethylene plastic, for a wide range of applications, from food containers to automobile parts to medical devices.
Polymers to the rescue! Saving cells from damaging ice
Research published in the Journal of the American Chemical Society by University of Utah chemists Pavithra Naullage and Valeria Molinero provides the foundation to design efficient polymers that can prevent the growth of ice that damages cells.
Mixing the unmixable -- a novel approach for efficiently fusing different polymers
Cross-linked polymers are structures where large molecular chains are linked together, allowing exceptional mechanical properties and chemical resistance to the final product.
Theoretical tubulanes inspire ultrahard polymers
Rice University engineers print 3D blocks based on theoretical tubulanes and find they're nearly as hard as diamond.
New synthesis method yields degradable polymers
MIT chemists have come up with a way to make certain drug-delivery polymers more readily degradable by adding a novel type of building block to the polymer backbone.
More Polymers News and Polymers Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: IRL Online
Original broadcast date: March 20, 2020. Our online lives are now entirely interwoven with our real lives. But the laws that govern real life don't apply online. This hour, TED speakers explore rules to navigate this vast virtual space.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Falling
There are so many ways to fall–in love, asleep, even flat on your face. This hour, Radiolab dives into stories of great falls.  We jump into a black hole, take a trip over Niagara Falls, upend some myths about falling cats, and plunge into our favorite songs about falling. Support Radiolab by becoming a member today at Radiolab.org/donate.