Nav: Home

BCN MedTech presents an automatic method to detect and segment the intrauterine cavity

May 22, 2020

Twin-to-twin transfusion syndrome (TTTS) occurs in around 10-15% of pregnancies with twins that share the same placenta. Typically, this syndrome appears before 24 weeks' gestation due to abnormal vascular communications located on the surface of the placenta. As a result, blood circulation is not balanced between the two twins, dramatically decreasing their chances of survival.

Fetoscopic laser photocoagulation is the most effective treatment for this syndrome and it consists of closing abnormal vascular connections located on the surface of the placenta to completely separate the circulation of blood to the two twins, thus preventing complications related to blood flow imbalance, such as death by cardiac overload, premature delivery and miscarriage.

The manoeuvrability of the fetoscope inserted through the uterine wall of the mother and the ability to burn all vessels that require sealing depends on the proper selection of the fetoscope entry point on the surface of the intrauterine cavity. Planning the best insertion point before the operation requires a good understanding of the patient's anatomy, which can be achieved using a virtual representation of the mother's uterus, via magnetic resonance imaging.

A study recently published in the advanced online edition of the journal IEEE Transactions on Medical Imaging presents the first automatic method to detect and segment the intrauterine cavity via three views (axial, sagittal and coronal) of the MRI by means of artificial intelligence and deep learning techniques.

A study conducted by Miguel Ángel González Ballester, ICREA research professor with the Department of Information and Communication Technologies (DTIC) at UPF, with Jordina Torrents-Barrena, first author of the study, Gemma Piella and Mario Ceresa, members of the UPF BCN MedTech Unit. Eduard Gratacós and Elisenda Eixarch, members of the Fetal i+D Fetal Medicine Research Center, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, are co-authors of the study and responsible for the clinics.

"The methodology presented uses neural networks based on the new paradigm of capsules to successfully capture the interdependency of the anatomy present in the MRI, particularly for unique class instances (anatomies), such as the intrauterine cavity and/or placenta", explains Jordina Torrents-Barrena, first author of the paper.

"The method designed is based on a reinforcement learning framework that uses capsules to delimit the location of the uterus. A capsule architecture is subsequently designed to segment (or refine) the whole intrauterine cavity", Torrents-Barrena adds. The latter network encodes the most discriminatory and robust features in the image.

The proposed method is evaluated by 13 performance measures and is also compared to 15 neural networks that have been previously published in the literature. "Our artificial intelligence method has been trained using magnetic resonance imaging from 71 pregnancies", Torrents-Barrena affirms.

"Having a three-dimensional representation allows us to evaluate different entry points and choose the one that offers the best visibility of all placental vessels with the slightest movement", comments Elisenda Eixarch, co-author of the study. "Undoubtedly, the application of this technology will allow us to move towards safer, more precise surgery", she adds.

On average, the methodology presented obtains a segmentation performance of over 91% for all tests and comparisons, highlighting the potential of this approach for use in the daily clinical practice as a surgical planning method.
-end-


Universitat Pompeu Fabra - Barcelona

Related Artificial Intelligence Articles:

Artificial intelligence aids gene activation discovery
Scientists have long known that human genes are activated through instructions delivered by the precise order of our DNA.
Artificial intelligence recognizes deteriorating photoreceptors
A software based on artificial intelligence (AI), which was developed by researchers at the Eye Clinic of the University Hospital Bonn, Stanford University and University of Utah, enables the precise assessment of the progression of geographic atrophy (GA), a disease of the light sensitive retina caused by age-related macular degeneration (AMD).
Classifying galaxies with artificial intelligence
Astronomers have applied artificial intelligence (AI) to ultra-wide field-of-view images of the distant Universe captured by the Subaru Telescope, and have achieved a very high accuracy for finding and classifying spiral galaxies in those images.
Using artificial intelligence to smell the roses
A pair of researchers at the University of California, Riverside, has used machine learning to understand what a chemical smells like -- a research breakthrough with potential applications in the food flavor and fragrance industries.
Artificial intelligence could revolutionize sea ice warnings
Today, large resources are used to provide vessels in the polar seas with warnings about the spread of sea ice.
A hidden history of artificial intelligence in primary care
Artificial intelligence methods are being utilized in radiology, cardiology and other medical specialty fields to quickly and accurately process large quantities of health data to improve the diagnostic and treatment power of health care teams.
Identifying light sources using artificial intelligence
Identifying sources of light plays an important role in the development of many photonic technologies, such as lidar, remote sensing, and microscopy.
Artificial intelligence could serve as backup to radiologists' eyes
Deploying artificial intelligence could help radiologists to more accurately classify lung diseases.
Reducing the carbon footprint of artificial intelligence
MIT system cuts the energy required for training and running neural networks.
Researchers rebuild the bridge between neuroscience and artificial intelligence
In an article in the journal Scientific Reports, researchers reveal that they have successfully rebuilt the bridge between experimental neuroscience and advanced artificial intelligence learning algorithms.
More Artificial Intelligence News and Artificial Intelligence Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: IRL Online
Original broadcast date: March 20, 2020. Our online lives are now entirely interwoven with our real lives. But the laws that govern real life don't apply online. This hour, TED speakers explore rules to navigate this vast virtual space.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Falling
There are so many ways to fall–in love, asleep, even flat on your face. This hour, Radiolab dives into stories of great falls.  We jump into a black hole, take a trip over Niagara Falls, upend some myths about falling cats, and plunge into our favorite songs about falling. Support Radiolab by becoming a member today at Radiolab.org/donate.