Nav: Home

BCN MedTech presents an automatic method to detect and segment the intrauterine cavity

May 22, 2020

Twin-to-twin transfusion syndrome (TTTS) occurs in around 10-15% of pregnancies with twins that share the same placenta. Typically, this syndrome appears before 24 weeks' gestation due to abnormal vascular communications located on the surface of the placenta. As a result, blood circulation is not balanced between the two twins, dramatically decreasing their chances of survival.

Fetoscopic laser photocoagulation is the most effective treatment for this syndrome and it consists of closing abnormal vascular connections located on the surface of the placenta to completely separate the circulation of blood to the two twins, thus preventing complications related to blood flow imbalance, such as death by cardiac overload, premature delivery and miscarriage.

The manoeuvrability of the fetoscope inserted through the uterine wall of the mother and the ability to burn all vessels that require sealing depends on the proper selection of the fetoscope entry point on the surface of the intrauterine cavity. Planning the best insertion point before the operation requires a good understanding of the patient's anatomy, which can be achieved using a virtual representation of the mother's uterus, via magnetic resonance imaging.

A study recently published in the advanced online edition of the journal IEEE Transactions on Medical Imaging presents the first automatic method to detect and segment the intrauterine cavity via three views (axial, sagittal and coronal) of the MRI by means of artificial intelligence and deep learning techniques.

A study conducted by Miguel Ángel González Ballester, ICREA research professor with the Department of Information and Communication Technologies (DTIC) at UPF, with Jordina Torrents-Barrena, first author of the study, Gemma Piella and Mario Ceresa, members of the UPF BCN MedTech Unit. Eduard Gratacós and Elisenda Eixarch, members of the Fetal i+D Fetal Medicine Research Center, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, are co-authors of the study and responsible for the clinics.

"The methodology presented uses neural networks based on the new paradigm of capsules to successfully capture the interdependency of the anatomy present in the MRI, particularly for unique class instances (anatomies), such as the intrauterine cavity and/or placenta", explains Jordina Torrents-Barrena, first author of the paper.

"The method designed is based on a reinforcement learning framework that uses capsules to delimit the location of the uterus. A capsule architecture is subsequently designed to segment (or refine) the whole intrauterine cavity", Torrents-Barrena adds. The latter network encodes the most discriminatory and robust features in the image.

The proposed method is evaluated by 13 performance measures and is also compared to 15 neural networks that have been previously published in the literature. "Our artificial intelligence method has been trained using magnetic resonance imaging from 71 pregnancies", Torrents-Barrena affirms.

"Having a three-dimensional representation allows us to evaluate different entry points and choose the one that offers the best visibility of all placental vessels with the slightest movement", comments Elisenda Eixarch, co-author of the study. "Undoubtedly, the application of this technology will allow us to move towards safer, more precise surgery", she adds.

On average, the methodology presented obtains a segmentation performance of over 91% for all tests and comparisons, highlighting the potential of this approach for use in the daily clinical practice as a surgical planning method.
-end-


Universitat Pompeu Fabra - Barcelona

Related Artificial Intelligence Articles:

A hidden history of artificial intelligence in primary care
Artificial intelligence methods are being utilized in radiology, cardiology and other medical specialty fields to quickly and accurately process large quantities of health data to improve the diagnostic and treatment power of health care teams.
Identifying light sources using artificial intelligence
Identifying sources of light plays an important role in the development of many photonic technologies, such as lidar, remote sensing, and microscopy.
Artificial intelligence could serve as backup to radiologists' eyes
Deploying artificial intelligence could help radiologists to more accurately classify lung diseases.
Reducing the carbon footprint of artificial intelligence
MIT system cuts the energy required for training and running neural networks.
Researchers rebuild the bridge between neuroscience and artificial intelligence
In an article in the journal Scientific Reports, researchers reveal that they have successfully rebuilt the bridge between experimental neuroscience and advanced artificial intelligence learning algorithms.
Artificial intelligence can help some businesses but may not work for others
The temptation for businesses to use artificial intelligence and other technology to improve performance, drive down labor costs, and better the bottom line is understandable.
Artificial intelligence could help predict future diabetes cases
A type of artificial intelligence called machine learning can help predict which patients will develop diabetes, according to an ENDO 2020 abstract that will be published in a special supplemental section of the Journal of the Endocrine Society.
Artificial intelligence for very young brains
Montreal's CHU Sainte-Justine children's hospital and the ÉTS engineering school pool their expertise to develop an innovative new technology for the segmentation of neonatal brain images.
Putting artificial intelligence to work in the lab
An Australian-German collaboration has demonstrated fully-autonomous SPM operation, applying artificial intelligence and deep learning to remove the need for constant human supervision.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
More Artificial Intelligence News and Artificial Intelligence Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Nina
Producer Tracie Hunte stumbled into a duet between Nina Simone and the sounds of protest outside her apartment. Then she discovered a performance by Nina on April 7, 1968 - three days after the assassination of Dr. Martin Luther King Jr. Tracie talks about what Nina's music, born during another time when our country was facing questions that seemed to have no answer, meant then and why it still resonates today.  Listen to Nina's brother, Samuel Waymon, talk about that April 7th concert here.