Nav: Home

Why toothpaste and cement harden over time

May 22, 2020

Take a look inside the cap of your favorite toothpaste, and you might see hard, white residue, a firm version of the smooth paste you squeeze onto your brush.

Many paste materials, also known as dense colloidal suspensions, stiffen as they age. Structural dynamics, or changes in the loads the materials undergo over time, are partly responsible for this change, but for decades, experts have suspected that there's more going on inside these materials.

Now, University of Delaware chemical and biomolecular engineering professor and chair Eric Furst and a team of researchers from the Ecole des Ponts and University Paris-Est and in France have discovered a process called contact-controlled aging that explains some age-related changes in paste materials.

They found that contacts form between particles, stabilizing the microstructure of these materials. Then, those contacts stiffen, increasing the stiffness of the materials.

The team described their findings in a paper published in the journal Nature Materials.

"When people think about aging in materials and the mechanical properties of materials as they age, especially in rheology or the study of how things flow, this mechanism has been overshadowed by changes in the organization, or microstructure, of the material," said Furst.

Not only are the findings novel, they are likely to prove useful. By understanding how materials age, the people who use them can design better ways to predict and mitigate unwanted changes in materials performance. The experiments closely tie the chemistry of the particle surfaces, which can be tailored by chemical reactions or with additives like surfactants and polymers, to the bulk material properties.

"This paper has some broad-ranging implications because there are a lot of types of problems out there where this type of contact aging may be really important," said Furst.

People in a wide range of industries could benefit from understanding the aging process of materials of this type, which includes cements, clays, soils, inks, paints, and more.

The researchers used a variety of methods to explore aging in silica and polymer latex suspensions. Initial experiments showed that the microstructure of the materials does not change over time. If the particles don't change positions, the team thought, then something must be happening between them.

In previous experiments, Furst has used laser tweezers -- use of a focused laser beam to manipulate, bend, and break microscopic structures of particles -- which proved to be the right experimental setup for spelunking this particular problem. Francesco Bonacci, then a doctoral student in France, visited UD to conduct laser tweezer experiments and study the stiffness of bonds in the silica and latex materials under investigation. These experiments enabled the discovery of contact aging.

Additional experiments suggested genericity -- that the results are likely to apply to a wide variety of dense colloidal suspensions.

For Furst, this project is an example of the power of collaborating with experts around the world.

"This was the result of an incredible international collaboration, just a beautiful team," he said. The co-authors on the paper include Bonacci, Xavier Chateau, Julie Goyon, Jennifer Fusier, and Anaël Lemaître.
-end-


University of Delaware

Related Aging Articles:

A new biomarker for the aging brain
Researchers at the RIKEN Center for Biosystems Dynamics Research (BDR) in Japan have identified changes in the aging brain related to blood circulation.
Scientists invented an aging vaccine
A new way to prevent autoimmune diseases associated with aging like atherosclerosis, Alzheimer's disease, and Parkinson's disease was described in the article.
The first roadmap for ovarian aging
Infertility likely stems from age-related decline of the ovaries, but the molecular mechanisms that lead to this decline have been unclear.
Researchers discover new cause of cell aging
New research from the USC Viterbi School of Engineering could be key to our understanding of how the aging process works.
Deep Aging Clocks: The emergence of AI-based biomarkers of aging and longevity
The advent of deep biomarkers of aging, longevity and mortality presents a range of non-obvious applications.
Intelligence can link to health and aging
For over 100 years, scientists have sought to understand what links a person's general intelligence, health and aging.
Putting the brakes on aging
Salk Institute researchers have developed a new gene therapy to help decelerate the aging process.
New insights into the aging brain
A group of scientists at the Gladstone Institutes investigated why the choroid plexus contains so much more klotho than other brain regions.
We all want 'healthy aging,' but what is it, really? New report looks for answers
Led by Paul Mulhausen, MD, MHS, FACP, AGSF, colleagues from the American Geriatrics Society (AGS) set looking critically at what 'healthy aging' really means.
New insight into aging
Researchers at the Montreal Neurological Institute and Hospital (The Neuro) of McGill University examined the effects of aging on neuroplasticity in the primary auditory cortex, the part of the brain that processes auditory information.
More Aging News and Aging Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Nina
Producer Tracie Hunte stumbled into a duet between Nina Simone and the sounds of protest outside her apartment. Then she discovered a performance by Nina on April 7, 1968 - three days after the assassination of Dr. Martin Luther King Jr. Tracie talks about what Nina's music, born during another time when our country was facing questions that seemed to have no answer, meant then and why it still resonates today.  Listen to Nina's brother, Samuel Waymon, talk about that April 7th concert here.