Biochemists Advance Knowledge Of Transport Through Membranes

May 22, 1997

How do nutrients and vitamins enter living cells? National Science Foundation (NSF)-funded biochemists at the University of Oklahoma at Norman have made a dramatic advance that largely answers this question.

Researchers previously inferred that the proteins in biological membranes somehow undergo structural changes during the uptake of important molecules. Now, experiments conducted by biochemist Phillip Klebba and colleagues prove the correctness of that assumption by directly showing that membrane proteins act much like exterior doors or gates that regulate entry into the cell. Their results, published in the May 23 issue of the journal Science, reveal that these entrance portals recognize substances that the cell needs for growth, actively open to allow their uptake and then close. Cells obtain, in this way, the molecules they need while preventing the entry of unnecessary or toxic compounds.

The upshot of these results is that membrane proteins do not necessarily form static, passive pores. Rather, they are dynamic entities capable of sensing their environment and actively acquiring the substances needed for cell growth, says Klebba.

The study, funded by the NSF and the National Institute of General Medical Sciences, looked at the protective membrane surrounding bacterial cells, which permits the entry of essential nutrients and vitamins but excludes toxic substances like detergents and antibiotics.

"The question of how nutrients and vitamins enter living cells has been answered by these experiments," says Marcia Steinberg, director of NSF's biomolecular structure program, which funded Klebba's research.

Small molecules cross this outer membrane through open channels formed by proteins. However, iron complexes are too large to pass through the open pores and instead enter through larger channels that are normally closed. The necessity of iron in metabolism makes its acquisition a fundamental need of living cells, but until now little was known about the operation of iron transport channels. In a second paper recently published in the Proceedings of the National Academy of Sciences, the researchers found that iron-containing molecules attach to the surfaces of cells by binding to the outside of a closed membrane protein. After binding iron, the protein opens to internalize the metal.

In addition, the experiments identify a methodology -- electron spin resonance spectroscopy -- suitable for studying these events in living cells. Living cells can be labeled and studied with this approach without disrupting their natural functions. The experiments thus make it possible to observe transport events as they happen, says Klebba, which will lead to new insights about the molecular mechanisms of membrane transport.


NSF is an independent federal agency responsible for fundamental research in all fields of science and engineering, with an annual budget of about $3.3 billion. NSF funds reach all 50 states, through grants to more than 2,000 universities and institutions nationwide. NSF receives more than 50,000 requests for funding annually, including at least 30,000 new proposals.

**Receive NSF news releases and tipsheets electronically via NSFnews. To subscribe, send an e-mail message to; in the body of the message, type "subscribe nsfnews" and then type your name. Also see NSF news products at:,, and

National Science Foundation

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to