Robotic joystick reveals how brain controls movement

May 23, 2006

By training a group of human subjects to operate a robot-controlled joystick, Johns Hopkins researchers have shown that the slower the brain "learns" to control certain muscle movements, the more likely it is to remember the lesson over the long haul. The results, the investigators say, could alter rehabilitation approaches for people who have lost motor abilities to brain injuries like strokes.

In a report on the work in the May 23 issue of PLoS Biology, the researchers built on their observations that some parts of the brain learn - and forget - fast, while others learn more slowly and more lastingly. Both types of learning are critical.

"We believe our work is the first to show that motor learning involves different time scales and implies that the best strategy in rehabilitating a stroke patient should focus on slow learning because slow-learned motor skills will be maintained longer," says the report's senior author, Reza Shadmehr, Ph.D., a professor of biomedical engineering in the Institute of Basic Biomedical Sciences at Johns Hopkins.

Neuroscientists long have thought that two things are required for mastering such muscle control - time and error. Time refers to the need to "sleep on it," for the brain to somehow process and "remember" how to carefully control muscles. As for error, it's thought that mistakes help the brain and muscles fine-tune fine movements. The requirement for time and error explains why repetition of simple movements day after day is used routinely in rehabilitating partially paralyzed stroke patients and those with other brain injuries.

To test the need for time in mastering muscle control, the research team designed a simple and short task. Fourteen healthy human subjects were asked to hold onto a robot-controlled joystick and keep it from moving as the robot driver pushed repeatedly - in quick pulses - to one side. The joystick then pushed repeatedly in the opposite direction and again the subjects were asked to keep the joystick centered.

The research team found that after all this pushing in different directions the subjects still were inclined to push the joystick in the first direction, even when the joystick was perfectly centered and not moving. Somehow the brain and muscles in the arm had "learned" this simple movement over the course of the experiment, which took only a few minutes, according to the researchers, showing that sleep is not required for learning such simple movements.

The robot-controlled joystick used in these experiments can measure precisely how hard and in what direction it's being pushed by the hand holding it. Using computer programs, the researchers then were able to apply mathematical equations to these measurements and calculate predictions of how the brain might be "learning" these simple movements.

For example, by taking into account the number of repetitions it took for the subjects to push the joystick in the first direction to keep it centered and how long it took for the subjects to "forget" how hard to push the joystick, the predictions suggest that the brain learns muscle control using at least two different steps.

First, the computer programs were able to tease out that the brain picked up the control task quickly, but actually forgot the task quickly as well. But, at the same time, the brain also was learning the same task more slowly, and that was responsible for the subjects' being able to "remember" the initial joystick-pushing movement.

"Rehab is about training, and you want to be able to train the slow-learning system to be successful," says Shadmehr.

As a next step, the team is interested in uncovering which parts of the brain are responsible for slow-learning. They hope that teasing this system apart will not only improve the understanding of brain function, but also tailor therapy strategies to target slow-learning and increase recovery of muscle control after brain injuries.
-end-
The researchers were funded by the National Institute of Neurologic Disorders and Stroke, a branch of the National Institutes of Health.

Authors on the paper are Maurice Smith, Ali Ghazizadeh and Shadmehr, all of Hopkins.

On the Web:
http://www.bme.jhu.edu/~reza/
http://biology.plosjournals.org/perlserv?request=index-html

Johns Hopkins Medicine

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.