Arctic explorer delivers unique snow-depth data for CryoSat

May 23, 2008

Following a formidable 106-day trek across the Arctic, which ended with the two Arctic Arc expedition members relying on Envisat images to guide them safely through disintegrating sea-ice, intrepid polar explorer Alain Hubert recently visited ESA to handover a unique set of snow-depth measurements.

To coincide with the launch of the International Polar Year (IPY) 2007-2008, Alain Hubert and fellow explorer Dixie Dansercoer ventured out onto the sea-ice to embark upon a trek from Siberia to northern Greenland via the North Pole - a route never before attempted. Throughout the expedition, the polar explorers had to endure temperatures down to -40ºC, encounters with polar bears and the incredible physical demand of having to drag heavy sledges across pressure ridges of sea-ice piled up several metres high as well as cross open water where the ice had fractured. Nevertheless, Alain and Dixie took time out every 50 km to make snow-depth measurements for the CryoSat mission.

"It wasn't really difficult to take these measurements for CryoSat," said Alain, "It became part of our routine. The difficult part of the expedition was putting one foot in front of the other when the ice is breaking up around you. As co-founder of the International Polar Foundation, a scientist as well as a seasoned explorer - I aim to form a kind of 'bridge' between science and society. Observing the changes that are occurring in the fragile Arctic environment will help lead to a better understanding of the effects of climate change, and ultimately the Earth system as a whole. CryoSat is an exciting mission that will help answer questions about the polar ice so we were very happy to contribute through our Arctic Arc expedition."

Since the Earth Explorer CryoSat mission, which is due for launch next year, is designed to measure tiny variations in the thickness of floating sea-ice and ice on land, understanding the effects that the overlying snow can have on the measurement of ice elevation is of huge importance. To this end, ESA has in place a dedicated validation programme that involves a number of field campaigns in the polar regions. Measurements collected on the ice and from the air are crucial to fully understand and characterise the geophysical uncertainties in the CryoSat products so that the data CryoSat delivers is interpreted as accurately as possible.

During a presentation held this week at ESA-ESTEC in the Netherlands Alain handed over the dataset to Richard Francis ESA's Project Manager for CryoSat, who commented that, "While snow-depth information holds the key to producing accurate maps of ice-thickness change over time, there are relatively few basic ground-measurements readily available. So when Alain offered to take measurements during his expedition, the CryoSat project was extremely grateful."

In turn, Alain and Dixie were also grateful for help provided by an existing ESA satellite. Under an ESA IPY project, they were able to rely on images from Envisat to guide them through some dangerous ice-break up. Alain explained, "As we approached the coast of northern Greenland, the sea ice in the Lincoln Sea began to break up chaotically - something we really weren't expecting. We realised there was no way we could take our planned route to reach land. Fortunately, however, we were guided by expedition router who relied on information provided by the Danish Technical University using data from ESA's Envisat satellite to help us circumnavigate the open waters and eventually reach land safely."

Malcolm Davidson ESA's CryoSat Validation Manager noted that, "ESA has now released the snow-depth data collected by the Arctic Arc expedition to the CryoSat Validation and Retrieval Team. The team has been quite eager to get the data and start the analysis. Ultimately we expect that - in conjunction with the core ESA-sponsored airborne campaigns and similar initiatives from other polar expeditions - the data will help us better measure ice-thickness changes over time from space with CryoSat-2."
-end-


European Space Agency

Related Arctic Articles from Brightsurf:

Archive of animal migration in the Arctic
A global archive with movement data collected across three decades logs changes in the behaviour of Arctic animals

The Arctic is burning in a whole new way
'Zombie fires' and burning of fire-resistant vegetation are new features driving Arctic fires -- with strong consequences for the global climate -- warn international fire scientists in a commentary published in Nature Geoscience.

Warming temperatures are driving arctic greening
As Arctic summers warm, Earth's northern landscapes are changing. Using satellite images to track global tundra ecosystems over decades, a new study found the region has become greener, as warmer air and soil temperatures lead to increased plant growth.

Arctic transitioning to a new climate state
The fast-warming Arctic has started to transition from a predominantly frozen state into an entirely different climate with significantly less sea ice, warmer temperatures, and more rain, according to a comprehensive new study of Arctic conditions.

New depth map of the Arctic Ocean
An international team of researchers has published the most detailed submarine map of the Artic Ocean.

Where are arctic mosquitoes most abundant in Greenland and why?
Bzz! It's mosquito season in Greenland. June and July is when Arctic mosquitoes (Aedes nigripes) are in peak abundance, buzzing about the tundra.

What happens in Vegas, may come from the Arctic?
Ancient climate records from Leviathan Cave, located in the southern Great Basin, show that Nevada was even hotter and drier in the past than it is today, and that one 4,000-year period in particular may represent a true, ''worst-case'' scenario picture for the Southwest and the Colorado River Basin -- and the millions of people who rely on its water supply.

Arctic Ocean changes driven by sub-Arctic seas
New research explores how lower-latitude oceans drive complex changes in the Arctic Ocean, pushing the region into a new reality distinct from the 20th-century norm.

Arctic Ocean 'regime shift'
Stanford scientists find the growth of phytoplankton in the Arctic Ocean has increased 57 percent over just two decades, enhancing its ability to soak up carbon dioxide.

Spider baby boom in a warmer Arctic
Climate change leads to longer growing seasons in the Arctic.

Read More: Arctic News and Arctic Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.