UCLA researchers identify leukemia stem cells

May 23, 2008

Stem cell researchers at UCLA have identified a type of leukemia stem cell and uncovered the molecular and genetic mechanisms that cause a normal blood stem cells to become cancerous.

The discovery may lead to new therapies that target these leukemia stem cells, attacking the disease at its very root and killing the early cells that give rise to the mature cancer cells. The study appears in the May 22, 2008 issue of the journal Nature.

Scientists now believe stem cells are responsible for the origin of many cancers and their ability to become drug resistant and spread throughout the body. Current cancer therapies don't target cancer stem cells, only the cancer cells that are generated by them. Scientists theorize that the cancer stem cells - a very small population when compared with mature cancer cells - lay dormant while the cancer cells are killed. Later, sometimes years later, the cancer stem cells begin to self-renew and differentiate into malignant cells, causing a recurrence of the disease.

If scientists could understand the biology of cancer stem cells and find a way to kill them, it might provide what the oncology research community never talks about - a potential cure for certain cancers. If the cancer stem cells could be sought out and eliminated from the body, the cancer could not re-grow.

Led by Dr. Hong Wu, a professor of medical and molecular pharmacology and a scientist with the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, the UCLA team has for the first time identified and isolated the stem cells responsible for a type of leukemia known as T-cell or acute T-lymphoblastic leukemia, an aggressive and deadly cancer that , can occur in both children and adults. The team also discovered the mechanisms by which blood stem cells - the cells that become the various cells in the blood supply - are converted to malignant leukemia stem cells, providing potential targets for therapies to home in on and attack those stem cells.

SUGGESTED QUOTE BY HONG WU

"One of the main challenges in cancer biology is to identify cancer stem cells and define the molecular and genetic events required for transforming normal cells into cancer stem cells," said Wu, who also is a researcher at UCLA's Jonsson Comprehensive Cancer Center and senior author of the Nature study. "With this study, we've been able to do that in one type of leukemia."

In mouse models that developed T-cell leukemia, the team studied the cancerous cells and, using a sorting method that sought out certain cell surface markers, was able to identify the leukemia stem cells. Those cells were isolated and then transplanted into other mouse models to see if they developed T-cell leukemia, a sign that the team had been successful in finding the leukemia stem cells.

The team also wanted to know how blood stem cells become cancerous and studied the cells at the molecular and genetic level to uncover those mechanisms.

"We thought that multiple genetic or molecular alterations would have to occur for cancer to develop," said Wei Guo, a postdoctoral student in Wu's lab and the first author of the study. "In this case, we were able to find those alterations."

The alterations found that collaboratively contribute to leukemia stem cell formation were the deletion of the PTEN tumor suppressor gene, a chromosomal translocation involving c-myc, a gene known to result in cancer that is usually regulated and kept in line, and the activation of a cell signaling pathway called beta catenin.

Wu and her team currently are testing therapies that target the alterations they discovered, hoping to interrupt the process that causes the blood stem cells to become leukemia stem cells, thereby preventing the cancer. They're also looking for other alterations that might be at play in transforming the normal stem cells into cancerous stem cells.
-end-
The stem cell center was launched in 2005 with a UCLA commitment of $20 million over five years. A $20 million gift from the Eli and Edythe Broad Foundation in 2007 resulted in the renaming of the center. With more than 150 members, the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research is committed to a multi-disciplinary, integrated collaboration of scientific, academic and medical disciplines for the purpose of understanding adult and human embryonic stem cells. The institute supports innovation, excellence and the highest ethical standards focused on stem cell research with the intent of facilitating basic scientific inquiry directed towards future clinical applications to treat disease. The center is a collaboration of the David Geffen School of Medicine, UCLA's Jonsson Cancer Center, the Henry Samueli School of Engineering and Applied Science and the UCLA College of Letters and Science. To learn more about the center, visit our web site at http://www.stemcell.ucla.edu/.

University of California - Los Angeles

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.