New disease gene will lead to better screening for pediatric heart disease

May 23, 2016

Barcelona, Spain: Cardiomyopathy, or a deterioration of the ability of the heart muscle to contract, generally leads to progressive heart failure. It is frequently inherited, and, because approximately 40% of children born with it are likely to die within five years of diagnosis, being able to identify its genetic basis is particularly important. Now, an international team of researchers has identified a new disease gene which is implicated in the development of severe paediatric cardiomyopathies. The gene is probably also involved in a milder, adult-onset form of the condition.

Presenting the results of the study to the annual conference of the European Society of Human Genetics today (Tuesday) Johanna Herkert, MD, a clinical geneticist at the University Medical Centre of Groningen, The Netherlands, will describe how analysis of the exomes (the parts of the genome that produce proteins) of children who were seriously ill with early-onset cardiomyopathies led to the finding that a mutation in the gene alpha-kinase 3 (ALPK3) had been inherited from both their fathers and mothers. In cases where both parents carry the mutation, the risk of having a child with a severe cardiomyopathy is 25%. Since the child does not carry a normal copy of gene the condition will develop at an early age.

"However, several family members who carried only one mutated gene copy also developed cardiac disease, albeit at a later stage in life," says Dr Herkert. "The identification of these mutations enables us to provide genetic counselling, predictive testing of family members, and prenatal testing in future pregnancies. It also allows us to provide early treatment, and a potential target for drug development in the future."

The researchers studied five children with cardiomyopathy from three unrelated families of different ethnic backgrounds. The families had previously been screened for mutations in other cardiomyopathy-related genes. Four patients were diagnosed during foetal life, or within hours of birth, and the fifth only developed symptoms at four years old. Three of the children died between 35 weeks of gestation and five days of birth; the other two were still alive at 11 years old, but showed signs of severe cardiomyopathy.

"We knew that mice without a functional ALPK3 gene displayed very similar cardiomyopathy related features to those observed in our paediatric patients," says Dr Herkert, "but we did not quite know how dramatic its effect would be in humans. Our findings show that we now should include this gene in routine diagnostic screening in order to be able to identify affected children and their family members at risk. This will also give us an insight into the prevalence of ALPK3-related cardiomyopathy in the general population."

Although the possibility of treating an affected foetus in the womb is still a long way off, the gene could provide a drug development target for a medicine to be administered immediately after birth before the disease has a chance to develop further. Affected family members with only one ALPK3 mutation could also be treated later in life.

"We are currently studying the effect of the ALPK3 mutations on the production of the protein in heart muscle, but also in skeletal muscle, as ALPK3 gene mutations may result in skeletal muscle problems too. Moreover, a large genome study has shown a possible link between ALPK3 and cardiac hypertrophy, or thickening of the heart muscle. We would like to explore this finding further as it may well mean that ALPK3 is implicated in other heart diseases in the general population, and once again this could suggest new treatment possibilities.

"Better knowledge of the precise role of the gene in disease development, as well as the elucidation of the molecular pathways involved, should lead us towards improved clinical care from the point of view of screening and surveillance, and to targeted drug development," Dr Herkert will conclude.
-end-
Abstract no: 22.2

European Society of Human Genetics

Related Heart Muscle Articles from Brightsurf:

Top Science Tip Sheet on heart failure, heart muscle cells, heart attack and atrial fibrillation results
Newly discovered pathway may have potential for treating heart failure - New research model helps predict heart muscle cells' impact on heart function after injury - New mass spectrometry approach generates libraries of glycans in human heart tissue - Understanding heart damage after heart attack and treatment may provide clues for prevention - Understanding atrial fibrillation's effects on heart cells may help find treatments - New research may lead to therapy for heart failure caused by ICI cancer medication

Muscle protein abundant in the heart plays key role in blood clotting during heart attack
A prevalent heart protein known as cardiac myosin, which is released into the body when a person suffers a heart attack, can cause blood to thicken or clot--worsening damage to heart tissue, a new study shows.

Heart muscle cells change their energy source during heart regeneration
Researchers from the Hubrecht Institute (KNAW) have found that the muscle cells in the heart of zebrafish change their metabolism during heart regeneration.

New study may have the reason why heart medication gives muscle pain
The McMaster research team found muscle cells treated with statins released the amino acid called glutamate at much higher levels than muscle cells that were untreated.

Vitamin E found to prevent muscle damage after heart attack
Early studies from scientists at the Baker Heart and Diabetes Institute in Australia and Jena University in Germany have found Vitamin E could be used to save the muscle from dying during a heart attack.

A simple method to improve heart-attack repair using stem cell-derived heart muscle cells
The heart cannot regenerate muscle after a heart attack, and this can lead to lethal heart failure.

What is known -- and not known -- about heart muscle diseases in children
Cardiomyopathies (heart muscle diseases) in children are the focus of a new scientific statement from the American Heart Association that provides insight into the diagnosis and treatment of the diseases as well as identifying future research priorities.

Being overweight as a teen may be associated with higher risk of heart muscle disease in adulthood
The risk of developing cardiomyopathy, which often leads to heart failure, increased in adult Swedish men who were even mildly overweight around age 18.

Heart patch could limit muscle damage in heart attack aftermath
Guided by computer simulations, an international team of researchers has developed an adhesive patch that can provide support for damaged heart tissue, potentially reducing the stretching of heart muscle that's common after a heart attack.

UA scientist identifies cellular gene signatures for heart muscle regeneration
A research team led by Jared Churko, PhD, director of the University of Arizona iPSC Core in the UA Sarver Heart Center, used a transcriptomic approach -- studying what genes are expressed -- to identify gene signatures of cell subpopulations identified as atrial-like or ventricular-like.

Read More: Heart Muscle News and Heart Muscle Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.