Nav: Home

SwRI scientists discover fresh lunar craters

May 23, 2016

San Antonio -- May 23, 2016 -- A Southwest Research Institute-led team of scientists discovered two geologically young craters -- one 16 million, the other between 75 and 420 million, years old -- in the Moon's darkest regions.

"These 'young' impact craters are a really exciting discovery," said SwRI Senior Research Scientist Dr. Kathleen Mandt, who outlined the findings in a paper published by the journal Icarus. "Finding geologically young craters and honing in on their age helps us understand the collision history in the solar system."

Key to this discovery was the SwRI-developed Lyman-Alpha Mapping Project (LAMP) instrument aboard the Lunar Reconnaissance Orbiter (LRO). LAMP uses the far-ultraviolet Lyman-alpha band skyglow and light from ultraviolet-bright stars LAMP to "see" in the dark and image the permanently shaded regions of the Moon. Using LAMP and LRO's Mini-RF radar data, the team mapped the floors of very large, deep craters near the lunar south pole. These deep craters are difficult to study because sunlight never illuminates them directly. Tiny differences in reflectivity, or albedo, measured by LAMP allowed scientists to discover these two craters and estimate their ages.

"We study planetary geology to understand the history of solar system formation," said SwRI's Dr. Thomas Greathouse, LAMP deputy principal investigator. "It is exciting and extremely gratifying to happen upon a unique and unexpected new method for the detection and age determination of young craters in the course of nominal operations."

Collisions in space have played an important role in the formation of the solar system, including the formation of the Moon. Impact craters tell the history of collisions between objects in the solar system.

Because the Moon has been peppered with impacts, its surface serves as a record of its past. Determining when collisions occurred helps scientists map the motion of objects in the solar system throughout its history. Craters that are young on geological timescales (millions of years) also provide information on the frequency of collisions.

When a small object collides with a larger object, such as the Moon, the impact creates a crater on the larger body. Craters can be a few feet in diameter or several miles wide. During the impact, the material ejected forms a blanket of material surrounding the crater. The ejecta blankets of "fresh," relatively young craters have rough surfaces of rubble and a sprinkling of condensed, bright dust. Over millions of years, these features undergo weathering and become covered with layers of fluffy, dark dust.

Scientists determined that the areas around the two craters were brighter and rougher than the surrounding landscape. The team estimated the age of one crater at about 16 million years. The other crater's rough extended ejecta blanket had faded, showing that this crater must be at least 75 million years old. But time would have completely covered the ejecta blanket in fluffy dust within 420 million years, providing an upper limit on its age. Other images, produced using laser altimetry and sunlight scattered off crater walls, provided details about topography, surface features, and material properties.

"Discovering these two craters and a new way to detect young craters in the most mysterious regions of the Moon is particularly exciting," said Mandt. "This method will be useful not only on the Moon, but also on other interesting bodies, including Mercury, the dwarf planet Ceres, and the asteroid Vesta."
"LRO-LAMP Detection of Geologically Young Craters within Lunar Permanently Shaded Regions" is published in Icarus (2016), This work was funded by NASA's Lunar Reconnaissance Orbiter project.

Editors: Image to accompany this story:

Southwest Research Institute

Related Solar System Articles:

Pressure runs high at edge of solar system
Out at the boundary of our solar system, pressure runs high.
What a dying star's ashes tell us about the birth of our solar system
A UA-led team of researchers discovered a dust grain forged in a stellar explosion before our solar system was born.
What scientists found after sifting through dust in the solar system
Two recent studies report discoveries of dust rings in the inner solar system: a dust ring at Mercury's orbit, and a group of never-before-detected asteroids co-orbiting with Venus, supplying the dust in Venus' orbit.
Discovered: The most-distant solar system object ever observed
A team of astronomers has discovered the most-distant body ever observed in our solar system.
Discovery of the first body in the Solar System with an extrasolar origin
Asteroid 2015 BZ509 is the very first object in the Solar System shown to have an extrasolar origin.
First interstellar immigrant discovered in the solar system
A new study has discovered the first known permanent immigrant to our solar system.
A star disturbed the comets of the solar system in prehistory
About 70,000 years ago, when the human species was already on Earth, a small reddish star approached our solar system and gravitationally disturbed comets and asteroids.
Scientists detect comets outside our solar system
Scientists from MIT and other institutions, working closely with amateur astronomers, have spotted the dusty tails of six exocomets -- comets outside our solar system -- orbiting a faint star 800 light years from Earth.
Does the organic material of comets predate our solar system?
The Rosetta space probe discovered a large amount of organic material in the nucleus of comet 'Chury.' In an article published by MNRAS on Aug.
Tracking a solar eruption through the solar system
Ten spacecraft, from ESA's Venus Express to NASA's Voyager-2, felt the effect of a solar eruption as it washed through the solar system while three other satellites watched, providing a unique perspective on this space weather event.
More Solar System News and Solar System Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.