Nav: Home

A new tool for discovering nanoporous materials

May 23, 2017

Materials classified as "nanoporous" have structures (or "frameworks") with pores up to 100 nm in diameter. These include diverse materials used in different fields from gas separation, catalysis, and even medicine (e.g. activated charcoal). The performance of nanoporous materials depends on both their chemical composition and the shape of their pores, but the latter is very difficult to quantify. So far, chemists rely on visual inspection to see whether two materials have similar pores. EPFL scientists, in the framework of NCCR-MARVEL, have now developed an innovative mathematical method that allows a computer to quantify similarity of pore structures. The method makes it possible to search databases with hundreds of thousands of nanoporous materials to discover new materials with the right pore structure. The work is published in Nature Communications.

The search for nanoporous materials

Nanoporous materials comprise a broad category and can differ widely in their chemical makeup. What unites them is the presence of nano-sized pores in their three-dimensional structure, which endows them with catalytic and absorption properties. These pores can range between 0.2-1000 nanometers, and their size and shape (their "geometry") can have a decisive effect on the material's properties. In fact, pore shape is as important a predictor of performance as chemical composition.

Today, computers can generate large databases of potential materials and determine -- before having to synthesize them -- which materials would perform best for a given application. But their chemistry is so versatile that the number of possible new materials is almost unlimited, while we do not have a method for quantifying and comparing similarity between pore geometries. All this means that finding the best nanoporous material for any given application is challenging.

Math to the rescue

A new method developed in a collaboration of the labs of Berend Smit and Kathryn Hess Bellwald at EPFL uses a technique from applied mathematics called "persistent homology". This technique can quantify the geometric similarity of pore structures by adopting the mathematical tools that are commonly used by Facebook and others to find similar faces in uploaded photos.

The persistent homology method produces "fingerprints", represented by barcodes, that characterize the pore shapes of each material in the database. These fingerprints are then compared to compute how similar the pore shapes of two materials are. This means that this approach can be used to screen databases and identify materials with similar pore structures.

The EPFL scientists show that the new method is effective at identifying materials with similar pore geometries. One class of nanoporous materials that would benefit from this innovation are the zeolites and the metal-organic frameworks (MOFs), whose applications range from gas separation and storage to catalysis.

The scientists used methane storage -- an important aspect of renewable energy -- as a case study. The new method showed that it is possible to find nanoporous materials that perform as well as known top-performing materials by searching databases for similar pore shapes.

Conversely, the study shows that the pore shapes of the top-performing materials can be sorted into topologically distinct classes, and that materials from each class require a different optimization strategy.

"We have a database of over 3,000,000 nanoporous materials, so finding similar structures through visual inspection is out of the question," says Berend Smit. "In fact, going through the literature, we found that authors often don't realize when a new MOF has the same pore structure as another one. So we really need a computational method. However, while humans are intuitively good at recognizing shapes as the same or different, we needed to work with the math department at EPFL to develop a formalism that can teach this skill to a computer."

"In the field of algebraic topology, mathematicians have formulated the theory of persistence homology in any dimension," says Kathryn Hess. "Previous applications used only the first two of these dimensions, so it's exciting that chemical engineers at EPFL have discovered a significant application that requires the third dimension as well."
-end-
This work was a collaboration between EPFL, INRIA (France) and UC Berkeley. It was funded by the US Department of Energy, the National Center of Competence in Research (NCCR) 'Materials' Revolution:Computational Design and Discovery of Novel Materials (MARVEL)' the Deutsche Forschungsgemeinschaft (DFG), the European Research Council (ERC; Horizon 2020; GUDHI).

Reference

Yongjin Lee, Senja D Barthel, Pawe? D?otko, S Mohamad Moosavi, Kathryn Hess, Berend Smit. Quantifying similarity of pore-geometry in nanoporous materials. Nature Communications 23 May 2017. DOI: 10.1038/ncomms15396

Ecole Polytechnique Fédérale de Lausanne

Related Pore Structures Articles:

Colon cancer nuclear pore dynamics are captured by HS-AFM
Using high-speed atomic force microscope, for the first time, a team of researchers from Kanazawa University has captured
Shapeshifting materials: Using light to rearrange macroscopic structures
OIST researchers create self-assembling molecules which can be broken down by ultraviolet light to recombine into novel macroscopic shapes.
Biophysicists say iodine is the solution of biomolecule structures
An international team including researchers from MIPT has shown that iodide phasing -- a long-established method in structural biology -- is universally applicable to membrane protein structure determination.
DNA double helix structures crystals
For the first time, engineers of Friedrich-Alexander Universität Erlangen Nürnberg (FAU) have succeeded in producing complex crystal lattices, so-called clathrates, from nanoparticles using DNA strands.
New types of structures for cage-like clathrates
Cage-like compounds called clathrates could be used for harvesting waste heat and turning it into electricity.
More Pore Structures News and Pore Structures Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...