Nav: Home

CAST project places new limitations on dark matter

May 23, 2017

Axions are particles whose hypothetical existence was introduced in 1977 by Roberto Peccei and Helen Quinn. The particles have been the talk of the town lately because their existence could largely explain so-called dark matter. In order to make a solid claim, researchers have been measuring the interaction between axions and photons. A team of international scientists from the project CERN Axion Solar Telescope (CAST) at the European research center CERN in Geneva, Switzerland, including Prof. Dr. Horst Fischer from the Institute of Physics at the University of Freiburg, have set strict limits to the probability that axions turn into photons. They have presented their findings in the latest issue of Nature Physics.

In the search for axions since 2003, the project group has directed its telescope toward the sun every morning and evening for 90 minutes each. The telescope has a magnet that CERN employees originally built for the Large Hadron Collider. According to the theory, the sun is one of those places in which axions form. Should they be captured by the telescope, the magnetic field would turn them into photons. The researchers could measure them with highly sensitive and extremely low-noise sensors.

Only after it is determined that axions turn into photons can researchers determine the portion of particles in dark matter. Based on the published work, which draws on data collected from 2012-2015, the team has found no evidence of solar axions. The team has set the strictest of limits regarding the intensity in the interaction between axions and photons on this basis. The result has direct consequences for a deeper understanding of various astrophysical anomalies such as the spread of high energetic gamma rays in the universe or efficient stellar heat dissipation. Presently the experiment is being redesigned to prove residual axions from the time of the Big Bang as well as particles of dark energy in the future.
-end-
Original publication: New CAST limit on the axion-photon interaction, CAST Collaboration, doi:10.1038/nphys4109, https://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys4109.html

Video of the CERN Axion Solar Telescope (CAST): https://cds.cern.ch/record/2053255

Contact: Institute of Physics
University of Freiburg

University of Freiburg

Related Dark Matter Articles:

Looking for dark matter
Dark matter is thought to exist as 'clumps' of tiny particles that pass through the earth, temporarily perturbing some fundamental constants.
New technique looks for dark matter traces in dark places
A new study by scientists at Lawrence Berkeley National Laboratory, UC Berkeley, and the University of Michigan -- published today in the journal Science - concludes that a possible dark matter-related explanation for a mysterious light signature in space is largely ruled out.
Researchers look for dark matter close to home
Eighty-five percent of the universe is composed of dark matter, but we don't know what, exactly, it is.
Galaxy formation simulated without dark matter
For the first time, researchers from the universities of Bonn and Strasbourg have simulated the formation of galaxies in a universe without dark matter.
Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.
New clues on dark matter from the darkest galaxies
Low-surface-brightness (LSB) galaxies offered important confirmations and new information on one of the largest mysteries of the cosmos: dark matter.
A new approach to the hunt for dark matter
A study that takes a novel approach to the search for dark matter has been performed by the BASE Collaboration at CERN working together with a team at the PRISMA+ Cluster of Excellence at Johannes Gutenberg University Mainz (JGU).
Could the mysteries of antimatter and dark matter be linked?
RIKEN researchers and collaborators have performed the first laboratory experiments to determine whether a slightly different way in which matter and antimatter interact with dark matter might be a key to solving both mysteries.
Placing another piece in the dark matter puzzle
A team led by Prof Dmitry Budker has continued their search for dark matter within the framework of the 'Cosmic Axion Spin Precession Experiment' (or 'CASPEr' for short).
Physicists have found a way to 'hear' dark matter
Physicists at Stockholm University and the Max Planck Institute for Physics have turned to plasmas in a proposal that could revolutionise the search for the elusive dark matter.
More Dark Matter News and Dark Matter Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.