Nav: Home

How to obtain highly crystalline organic-inorganic perovskite films for solar cells

May 23, 2017

Members of the Laboratory of New Materials for Solar Energetics, working at the Faculty of Material Sciences, in cooperation with their colleagues from the Faculty of Chemistry of the Lomonosov Moscow State University have elaborated a new method. It allows to obtain highly crystalline organic-inorganic perovskite films for solar cells. The project results are published in the Materials Horizons.

Scientists of the Lomonosov Moscow State University Press Service has already worked on nanowires of hybrid organic-inorganic perovskites, which are treated as a promising substance for creation of light emitting diodes, lasers and photodetectors on their basis. However, the most promising application area for such substances is elaboration of perovskite solar cells - namely, photovoltaic devices of new generation. Efficiency of these devices has risen by several times over the last five years and now comprises even more than 22%. This is significantly higher than maximum efficiency, obtained for solar cells on the basis of polycrystalline silicon. Efficiency of the most popular solar cells, produced industrially, is 12-15%.

At the moment one could distinguish two main approaches to obtaining of such material. The first one implies coating with chemical agents from vaporous state and the second one -- solution crystallization. Projects, aimed at improving these methods, have been intensively developed in recent years. However, further perspectives of these approaches are almost exhausted. In this light elaboration of new techniques for creation of materials, used in photovoltaics, could give fresh impetus in the area development.

Alexey Tarasov, Doctor of Chemistry, the Head of the Laboratory and the Study Lead shares: "As part of the study we've found out several new compounds -- polyiodides, which are liquid at room temperature, possessing unique properties. They look like viscous liquids of dark brown color with metal gleam, obtained from two solid powders, which simply melt while blending. Liquid state of such compounds allows not to use hazard solvents and, moreover, their chemical composition contributes to formation of a necessary perovskite upon contact with a metallic lead film or other lead compounds. As a result of the chemical interaction between a lead film and polyiodide melts, a perovskite film, comprised of large interpenetrating crystals, is formed.

Polyiodide melts are deposited on lead by a so called spin coating technique. For this purpose a glass substrate, on which a lead layer is applied by thermal spraying, is fixed on a whirling rod and starts rotating. Polyiodide is spilled on the whirling glass substrate and afterwards polyiodide residue is flushed by a solvent (namely, isopropanol). As a result you get perovskite films from 200 to 700 nm in thickness. Their stability is determined, for the first place by the material, of which they consist. The members of the Faculty of Material Sciences have shown the possibility to diversify the composition of applied polyiodides and, consequently, the possibility to select a composition with optimal stability.

Alexey Tarasov comments: "A perovskite film exhibit intense photoluminescence and large lifetimes of charge carriers that provides good functional properties. We've also revealed in our project the possibility to obtain perovskite films of various compositions, while using mixed polyiodide compounds. Researches, conducted by our laboratory in the area of perovskite photovoltaics, are funded in the framework of a Federal Target Program of the Russian Ministry of Education and Science together with the industrial partner - EuroSibEnergo Company."

The Laboratory currently continues studying properties of discovered polyiodides and elaborating on their basis a technology, allowing to obtain solar cells with high efficiency.
-end-
The research has been conducted in cooperation with scientists from the Swiss Federal Institute of Technology in Lausanne.

Lomonosov Moscow State University

Related Solar Cells Articles:

Record efficiency for printed solar cells
A new study reports the highest efficiency ever recorded for full roll-to-roll printed perovskite solar cells.
Next gen solar cells perform better when there's a camera around
A literal ''trick of the light'' can detect imperfections in next-gen solar cells, boosting their efficiency to match that of existing silicon-based versions, researchers have found.
On the trail of organic solar cells' efficiency
Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials.
Exciting tweaks for organic solar cells
A molecular tweak has improved organic solar cell performance, bringing us closer to cheaper, efficient, and more easily manufactured photovoltaics.
For cheaper solar cells, thinner really is better
Researchers at MIT and at the National Renewable Energy Laboratory (NREL) have outlined a pathway to slashing costs further, this time by slimming down the silicon cells themselves.
Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.
Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.
Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.
Solar cells with new interfaces
Scientists from NUST MISIS (Russia) and University of Rome Tor Vergata found out that a microscopic quantity of two-dimensional titanium carbide called MXene significantly improves collection of electrical charges in a perovskite solar cell, increasing the final efficiency above 20%.
Welcome indoors, solar cells
Swedish and Chinese scientists have developed organic solar cells optimised to convert ambient indoor light to electricity.
More Solar Cells News and Solar Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.