Nav: Home

Researchers untangle causes of differences in East Coast sea level rise

May 23, 2017

For years, scientists have been warning of a so-called "hot spot" of accelerated sea-level rise along the northeastern U.S. coast. But accurately modeling this acceleration as well as variations in sea-level rise from one region to another has proven challenging.

Now an upcoming paper in Geophysical Research Letters offers the first comprehensive model for understanding differences in sea level rise along North America's East Coast. That model incorporates data not just from atmospheric pressure and ocean dynamics--changing currents, rising ocean temperatures and salinity all influence sea level--but also, for the first time, ice mass change in Greenland and Antarctica. The researchers say their model supports a growing consensus that sea level rise began accelerating in 1990 and that what they found will improve estimates of future sea level rise at a local level.

"A lot of people have been looking for sea level acceleration and have been having trouble finding it," said James Davis, co-author on the paper and a professor and researcher at the Lamont-Doherty Earth Observatory. "The fact that we could model this well seems to indicate that what we are measuring is correct."

Davis worked together with oceanographer Nadya Vinogradova, founder of Cambridge Climate Institute in Massachusetts, on the sea level rise modeling project. Their model, which incorporated assumptions that acceleration of sea level rise began in the 1990s and not before that, accurately predicted variations in sea level rise along North America's East Coast that have been observed in tide-gauge data for over a half century.

Recent research indicates that global mean sea level, or the average height of the world's oceans, has been increasing by 3 millimeters (.1 inches) per year on average since 1993, when satellites first started measuring it. But along the U.S. East Coast north of Cape Hatteras, rates of sea level rise were found to be some three to four times higher than the global average over certain periods.

Essential to the model Davis and Vinogradova built was research published in 2014 that for the first time measured acceleration in glacial melt in Greenland and Antarctica using data from NASA satellite GRACE. Another critical element was their addition of ocean dynamic modeling from University of Hamburg's GECCO2 that, although low resolution compared to more current models, allowed them to look at a timeline going back to 1948. Newer, higher resolution models don't reach back any further than 1990.

The researchers combined the GRACE and GECCO2 models with atmospheric pressure data and compared these against East Coast tide-gauge records, which measure actual sea levels at the shoreline and are plentiful and high quality for much of the 20th and early 21st centuries.

Davis and Vinogradova found that contributions to the ocean from melting of the Greenland ice sheet actually tend to accelerate sea level rise along the southern part of the U.S. East Coast, south of latitude 35?, in part due to a force called gravitational self-attraction and elastic loading. Though the melted ice adds volume to the oceans, it also causes sea levels closest to a melted glacier to fall due to a decline in gravitational pull from mass loss, called gravitational self-attraction. The loss of ice mass also causes the land that was underneath that ice to rise, and depresses the floor of surrounding ocean basin, which is called elastic loading.

In contrast, changing ocean dynamics are responsible for accelerated sea level rise along the northern part of the coast, north of latitude 40?. For instance, an influx of freshwater from Greenland glacial melt to the nearby northern Atlantic, as well as rising ocean temperatures in the northern Atlantic, are weakening an established current system called the Atlantic Meridional Overturning Circulation, which drives the Gulf Stream. Typically the Gulf Stream depresses sea level right along the coast, so as this current weakens, sea levels bounce back. Meanwhile, higher ocean temperatures kick up sea level by expanding the water column.

Davis and Vinogradova chose to focus on the acceleration of sea level rise specifically to avoid the problem of accurately measuring what is known as post-glacial rebound. Post-glacial rebound is the ongoing shape-shifting of the earth's surface that occurs after it is released from the burden of mountains of glacial ice, a process that began in North America at the end of its last ice age 16,000 years ago. (These changes occur very slowly over long time periods, unlike elastic loading, which is near-instantaneous and "elastic.")

As with elastic loading, post-glacial rebound can causes the land or sea floor to bulge in some places and to sink in others, which can change the relationship between sea level and the land. Post-glacial rebound was the primary contributor to sea-level change over much of the 20th century along some parts of the East Coast--from Chesapeake Bay to New York as well as north of Maine. But short-term accelerations tend to be less sensitive to changes like post-glacial rebound that occur on time scales of thousands of years, said Davis.

Davis said that even though the results of their modeling do support the notion that sea level rise has been accelerating over the past 25 years, that doesn't mean it will continue. "What we're seeing is big," said Davis. "But there's nothing in this paper that says, 'Oh, I've discovered acceleration and we're all going to drown now.' You can't predict forward." There are many sources of feedback in the system that scientists still don't understand, he said.

Still, Davis suggested the findings might serve as a tool for local governments. "Suppose you're a mayor in Miami and you hear that the projections for Greenland ice melt are wrong, and they're going to be much greater in the next century. You have to worry much more than if you're a mayor in Nova Scotia. But then if you're talking about ocean currents, it's flipped," said Davis. "Wherever you live, you can't just go by these [Intergovernmental Panel on Climate Change] reports that say global sea level rise is one number."

The Earth Institute at Columbia University

Related Sea Level Articles:

How sea level rise affects birds in coastal forests
Saltwater intrusion changes coastal vegetation that provides bird habitat. Researchers found that the transition from forests to marshes along the North Carolina coast due to climate change could benefit some bird species of concern for conservation.
As sea level rises, wetlands crank up their carbon storage
Some wetlands perform better under pressure. A new Nature study revealed that when faced with sea-level rise, coastal wetlands respond by burying even more carbon in their soils.
Why is sea level rising faster in some places along the US East Coast than others?
Sea levels are rising globally from ocean warming and melting of land ice, but the seas aren't rising at the same rate everywhere.
Snow over Antarctica buffered sea level rise during last century
A new NASA-led study has determined that an increase in snowfall accumulation over Antarctica during the 20th century mitigated sea level rise by 0.4 inches.
Global sea level could rise 50 feet by 2300, study says
Global average sea-level could rise by nearly 8 feet by 2100 and 50 feet by 2300 if greenhouse gas emissions remain high and humanity proves unlucky, according to a review of sea-level change and projections by Rutgers and other scientists.
Study: Reducing carbon emissions will limit sea level rise
A new study demonstrates that a correlation also exists between cumulative carbon emissions and future sea level rise over time -- and the news isn't good.
Antarctica ramps up sea level rise
Ice losses from Antarctica have increased global sea levels by 7.6 mm since 1992, with two fifths of this rise (3.0 mm) coming in the last five years alone.
Coral reefs losing ability to keep pace with sea-level rise
Many coral reefs will be unable to keep growing fast enough to keep up with rising sea levels, leaving tropical coastlines and low-lying islands exposed to increased erosion and flooding risk, new research suggests.
Connection of sea level and groundwater missing link in climate response
About 250 million years ago, when the Earth had no ice caps and the water around the equator was too hot for reptiles, sea level still rose and fell over time.
Researchers issue first-annual sea-level report cards
Researchers are launching new web-based 'report cards' to monitor and forecast changes in sea level at 32 localities along the US coastline from Maine to Alaska.
More Sea Level News and Sea Level Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab