Nav: Home

Understanding stars: How tornado-shaped flow in a dynamo strengthens the magnetic field

May 23, 2017

WASHINGTON, D.C., May 23, 2017 -- The massive, churning core of conducting liquids in stars and some planets creates a dynamo that generates the planetary body's magnetic field. Researchers aim to better understand these dynamos through computer simulations and by recreating them in the laboratory using canisters of rapidly spinning, liquid sodium.

A new simulation based on the von-Kármán-Sodium (VKS) dynamo experiment, run jointly by the French Atomic Energy Commission (CEA), the National Center for Scientific Research (CNRS) and the École Normale Supérieure (ENS) from Paris and Lyon, takes a closer look at how the liquid vortex created by the device generates a magnetic field. Researchers investigated the effects of fluid resistivity and turbulence on the collimation of the magnetic field, where the vortex becomes a focused stream. They report their findings this week in the journal Physics of Plasmas, from AIP Publishing.

The study is the first to examine the flow inside the churning blades at high resolution, and can offer ways to improve laboratory dynamos so that they more accurately recreate stellar astronomical observations.

"We hope that, in the future, we can give a better description of the flows," said lead author Jacobo Varela, now a postdoctoral researcher at the Oak Ridge National Laboratory. "Using this approach, we can begin to understand the dynamo that is observed in the stars."

Dynamos turn kinetic energy into magnetic energy by transforming the rotation of an electrically conducting fluid or plasma into a magnetic field. In the VKS dynamo, two impeller blades on either side of a cylinder filled with liquid sodium create turbulence, which can generate the magnetic field.

The mechanisms that create that field, however, are poorly understood. Other researchers have performed global simulations of sodium dynamos, but the models yielded low-resolution results. This research models the vortex-shaped flow within a small region next to an impeller inside the VKS dynamo.

"The helical flows between the impeller blades collimate the flow that strengthens the magnetic field and generates the field observed in the device," Varela said.

The researchers simplified the device's geometry and built focused magnetohydrodynamic simulations to understand how the flow turbulence and the device's material characteristics affect the magnetic field collimation.

"We found that when you use magnetized ferromagnetic materials, there is an effective increase in the magnetic field collimation, resulting in a lower dynamo threshold, and this is what they observed in the experiment," Varela said.

In contrast, using conducting materials in the simulation weakened field collimation. This finding may explain why researchers can trigger dynamo action in VKS experiments more easily when using soft iron impellers.

The researchers also analyzed their results in the context of the mean-field dynamo theory, which attempts to explain how stars and planets sustain their magnetic fields. As the turbulence increased in the simulation, the magnetic field shifted from a steady 1-to-1 with periodic oscillations, such as the ones observed in certain stars. The magnetic field of the sun, for example, switches polarity approximately every 11 years, which is a product of its turbulence and the speed of its rotation.

Varela and his colleagues at CNRS continue to develop the model to reflect the actual device's geometry. They plan to investigate additional parameters, such as the blade shape and the magnetic field background, so that they can more closely simulate device performance and test ways to optimize the machine.

"The simulation we are performing is just the very first step, but with the model we have now, we can catch a lot of the physics they observe in the VKS dynamo experiment," Varela said. "Our observations and data from the machine will give us much more evidence of the dynamo loop in stars and other astronomical objects."
The article, "Effects of turbulence, resistivity and boundary conditions on helicoidal flow collimation: Consequences for the Von-Kármán-Sodium dynamo experiment," is authored by Jacobo Varela, Sacha Brun, Bérengère Dubrulle and Caroline Nore. The article will appear in Physics of Plasmas May 23, 2017 [DOI: 10.1063/1.4983313). After that date, it can be accessed at


Physics of Plasmas is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. See

American Institute of Physics

Related Magnetic Field Articles:

Understanding stars: How tornado-shaped flow in a dynamo strengthens the magnetic field
A new simulation based on the von-Kármán-Sodium (VKS) dynamo experiment takes a closer look at how the liquid vortex created by the device generates a magnetic field.
'Quartz' crystals at the Earth's core power its magnetic field
Scientists at the Earth-Life Science Institute at the Tokyo Institute of Technology report in Nature (Fen.
Brightest neutron star yet has a multipolar magnetic field
Scientists have identified a neutron star that is consuming material so fast it emits more x-rays than any other.
Confirmation of Wendelstein 7-X magnetic field
Physicist Sam Lazerson of the US Department of Energy's Princeton Plasma Physics Laboratory has teamed with German scientists to confirm that the Wendelstein 7-X fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.
High-precision magnetic field sensing
Scientists have developed a highly sensitive sensor to detect tiny changes in strong magnetic fields.
Brilliant burst in space reveals universe's magnetic field
Scientists have detected the brightest fast burst of radio waves in space to date -- locating the source of the event with more precision than previous efforts.
Optical magnetic field sensor can detect signals from the nervous system
The human body is controlled by electrical impulses in the brain, the heart and nervous system.
What did Earth's ancient magnetic field look like?
New work from Carnegie's Peter Driscoll suggests Earth's ancient magnetic field was significantly different than the present day field, originating from several poles rather than the familiar two.
Just what sustains Earth's magnetic field anyway?
Earth's magnetic field shields us from deadly cosmic radiation, and without it, life as we know it could not exist here.
Ironing out the mystery of Earth's magnetic field
The Earth's magnetic field has been existing for at least 3.4 billion years thanks to the low heat conduction capability of iron in the planet's core.

Related Magnetic Field Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#518 With Genetic Knowledge Comes the Need for Counselling
This week we delve into genetic testing - for yourself and your future children. We speak with Jane Tiller, lawyer and genetic counsellor, about genetic tests that are available to the public, and what to do with the results of these tests. And we talk with Noam Shomron, associate professor at the Sackler School of Medicine at Tel Aviv University, about technological advancements his lab has made in the genetic testing of fetuses.