Nav: Home

Atomic structure of irradiated materials is more akin to liquid than glass

May 23, 2017

WASHINGTON, D.C., May 23, 2017 -- Materials exposed to neutron radiation tend to experience significant damage, leading to the containment challenges involved in immobilizing nuclear waste or nuclear plant confinements. At the nanoscale, these incident neutrons collide with a material's atoms that, in turn, then collide with each other somewhat akin to billiards. The resulting disordered atomic network and its physical properties resemble those seen in some glassy materials, which has led many in the field to use them in nuclear research.

But the similarities between the materials may not be as useful as previously thought, according to new results reported this week in The Journal of Chemical Physics, from AIP Publishing.

The disordered atomic networks of glassy substances result from vitrification, the transformation of a substance into glass by its melting and (typically) rapid subsequent cooling. During this cooling, or quenching, atoms don't have time to settle in an organized way, and instead form a disordered atomic network. This led a group of researchers from the University of California, Los Angeles (UCLA) and Oak Ridge National Laboratory to explore the question: Do irradiation and vitrification have the same impact on the atomic structure of materials?

To find an answer they explored quartz, a simple yet ubiquitous material in nature used for myriad engineering applications.

Traditional experiments don't allow researchers to "see" atoms directly, especially within disordered materials. So, for their study, the group relied on atomistic simulations using the molecular dynamics technique.

"The molecular dynamics technique is based on numerically solving Newton's laws of motion for a group of interacting atoms," said Mathieu Bauchy, an assistant professor in the Civil and Environmental Engineering department at UCLA. "All atoms apply a force on each other that can be used to calculate the acceleration of each atom over time."

Based on this technique, they were able to simulate the irradiation-induced disordering of quartz by sequentially colliding the atoms of the network with fictitious incident neutrons.

"We also simulated quartz's vitrification by heating and quickly quenching the atoms," Bauchy said. "Finally, we compared the resulting atomic structure of these two disordered materials."

They discovered surprising differences.

"Quite unexpectedly, we found that the disordering induced by irradiation differs in nature from that induced by vitrification," Bauchy said. "This is quite surprising because glasses and heavily irradiated materials typically exhibit the same density, so that glasses are often used as models to simulate the effect of the exposure to radiations on materials."

In contrast, the researchers' results suggest that irradiated materials are more disordered than glasses. "The atomic structure of irradiated materials is actually closer to that of a liquid than to that of a glass," Bauchy said.

The group's findings potentially have serious implications for the selection of materials for nuclear applications.

"First, we suggest that present models might be underestimating the extent of the damage exhibited by materials subjected to irradiation, which raises obvious safety concerns," said N.M. Anoop Krishnan, a postdoctoral researcher also at UCLA. "Second, the different natures of irradiation- and vitrification-induced disordering suggest that glasses can also be affected by irradiation."

This is a significant discovery because glasses, which are believed to "self-heal" under irradiation, are commonly used to immobilize nuclear waste via vitrification.

"These waste forms are expected to remain stable for millions of years once deposited into geological depositories, so our lack of understanding of the effect of irradiation represents a real concern," Krishnan said.

Next, the group plans to explore the effect of irradiation on common aggregates found in the concrete of nuclear power plants and on nuclear waste immobilization glasses. "Ultimately, our goal is to develop novel models to predict the long-term effect of irradiation on the structure and properties of materials," Bauchy said.
-end-
The article, "Irradiation- vs. vitrification-induced disordering: The case of α-quartz and glassy silica," is authored by N.M. Anoop Krishnan, Bu Wang, Yann Le Pape, Gaurav Sant and Mathieu Bauchy. The article will appear in The Journal of Chemical Physics May 23, 2017(DOI: 10.1063/1.4982944). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.4982944.

For a video illustrating the type of atomic disordering observed upon irradiation and vitrification, click here: https://www.youtube.com/watch?v=AONCztXsLO4 (Credit: Jonathan Berjikian and N.M. Anoop Krishnan/UCLA).

ABOUT THE JOURNAL

The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See http://jcp.aip.org.

American Institute of Physics

Related Glass Articles:

Glass tables can cause life-threatening injuries
Faulty glass in tables can cause life-threatening injuries, according to a Rutgers study, which provides evidence that stricter federal regulations are needed to protect consumers.
The nature of glass-forming liquids is more clear
Researchers from The University of Tokyo have found that attractive and repulsive interactions between particles are both essential to form structural order that controls the dynamics of glass-forming liquids.
Experimental study of how 'metallic glass' forms challenges paradigm in glass research
Unlike in a crystal, the atoms in a metallic glass are not ordered when the liquid solidifies.
On-demand glass is right around the corner
A research group coordinated by physicists of the University of Trento was able to probe internal stress in colloidal glasses, a crucial step to control the mechanical properties of glasses.
Glass from a 3D printer
ETH researchers used a 3D printing process to produce complex and highly porous glass objects.
Making glass more clear
Northwestern University researchers have developed an algorithm that makes it possible to design glassy materials with dynamic properties and predict their continually changing behaviors.
Researchers use 3D printer to print glass
For the first time, researchers have successfully 3D printed chalcogenide glass, a unique material used to make optical components that operate at mid-infrared wavelengths.
New family of glass good for lenses
A new composition of germanosilicate glass created by adding zinc oxide has properties good for lens applications, according to Penn State researchers.
In-depth insights into glass corrosion
Silicate glass has many applications, including the use as a nuclear waste form to immobilize radioactive elements from spent fuel.
New research questions the 'Glass Cliff' and corroborates the persistent 'Glass Ceiling'
Are women more likely to be appointed to leadership positions in crisis situations when companies are struggling with declining profits?
More Glass News and Glass Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.