Nav: Home

Genetic mutation trade-offs lead to parallel evolution

May 23, 2017

Organisms in nature adapt and evolve in complex environments. For example, when subjected to changes in nutrients, antibiotics, and predation, microbes in the wild face the challenge of adapting multiple traits at the same time. But how does evolution unfold when, for survival, multiple traits must be improved simultaneously?

While heritable genetic mutations can alter phenotypic traits and enable populations to adapt to their environment, adaptation is frequently limited by trade-offs: a mutation advantageous to one trait might be detrimental to another.

Because of the interplay between the selection pressures present in complex environments and the trade-offs constraining phenotypes, predicting evolutionary dynamics is difficult.

Researchers at the University of Illinois at Urbana-Champaign have shown how evolutionary dynamics proceed when selection acts on two traits governed by a trade-off. The results move the life sciences a step closer to understanding the full complexity of evolution at the cellular level.

Seppe Kuehn, an assistant professor of physics and member of the Center for the Physics of Living Cells at the U. of I., led the research. The team studied populations of the bacterium Escherichia coli, which can undergo hundreds of generations in a single week, providing ample opportunity to study mutations and their impact on heritable traits.

The team selected populations of E. coli for faster migration through a porous environment. A quantitative model revealed that populations could achieve the fastest migration by improving two traits at once -- swimming speed and growth rate (cell division).

Kuehn explains, "This study sheds new light on how evolution proceeds when performance depends on two traits that are restricted by a trade-off. Though a mathematical model suggests that the fastest migrating populations should be composed of cells that swim fast and reproduce quickly, what we found was that populations achieve faster migration through two divergent evolutionary paths that are mutually exclusive: in other words, these populations improved in either swimming speed or reproduction rate, but not both."

David T. Fraebel, a U. of I. graduate student in Kuehn's lab group, is lead author on the study. He comments, "Most experiments apply selection pressure to optimize a single trait, and trade-offs are observed in this context due to decay of traits that aren't being selected rather than due to compromise between multiple pressures. We selected for swimming and growth simultaneously, yet E. coli was not able to optimize both traits at once."

The selection environment created by the team determined which evolutionary trajectory the populations followed. In a nutrient-rich medium, faster swimming meant slower reproduction; in a nutrient-poor environment, however, slower swimming and faster reproduction led to the same desired outcome: faster migration through the porous environment.

By sequencing the DNA of the evolved populations, the team identified the mutations responsible for adaptation in each condition. When they genetically engineered these mutations into the founding strain, these cells demonstrated faster migration and the same phenotypic trade-off as the evolved strains.

"Our results support the idea that evolution takes the direction that's genetically easy," says Kuehn. "In a nutrient-rich environment, it's easy to find a mutation that enables the cells to swim faster. In a nutrient-poor environment, it's easy to find a mutation that makes cell division faster. In both cases, the mutations are disrupting negative regulatory genes whose function it is to reduce gene expression or protein levels."

"Other recent studies have shown that microevolution is dominated by changes in negative regulatory elements. The reason: it's statistically easy to find a mutation that breaks things versus one that builds new function or parts.

When selection acts on two traits restricted by a trade-off, the phenotype evolves in the direction of breaking negative regulatory elements, because it's an easy path statistically. It relates to the availability of useful mutations."

Kuehn summarizes the finding's value: "Improving predictive modeling of evolution will involve understanding how mutations alter the regulation of cellular processes and how these processes are related to trade-offs that constrain traits. Uncovering the general principles that define the relationship between regulation and trade-offs could enable us to predict evolutionary outcomes."

These findings are published in the online journal eLife.
-end-


University of Illinois College of Engineering

Related Evolution Articles:

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.
Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.
How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.
Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.