Nav: Home

Scientists develop new concept of confined catalysis under 2-D materials

May 23, 2017

The research group led by Profs. FU Qiang and BAO Xinhe from the Dalian Institute of Chemical Physics of the Chinese Academy of Sciences revealed both the geometric constraint and confinement field in two-dimensional (2D) space between a graphene overlayer and Pt(111). The researchers demonstrated a new concept of confined catalysis under 2D materials, which they have named "catalysis under cover."

These findings were published in the latest issue of PNAS, in an article entitled "Confined catalysis under two-dimensional materials."

Small spaces in nanoreactors may have big implications for chemistry. The chemical nature of molecules and reactions within nanospaces can be changed significantly due to the nanoconfinement effect. Understanding the fundamentals of confined catalysis has become an important topic in heterogeneous catalysis. 2D nanoreactors formed under 2D materials can provide a well-defined model for exploring confined catalysis.

The scientists chose a graphene/Pt (111) surface as a model for studying confined catalysis using density functional theory (DFT) calculations. They showed that the adsorption of atoms and molecules on the Pt(111) surface is weakened under graphene. A similar result has been found on Pt(110) and Pt(100) surfaces covered with graphene. Both the geometric constraint and confinement field imposed by the 2D cover are attributed to the observed confinement phenomena.

The general tendency for weakened surface adsorption under the confinement of a graphene overlayer enables feasible modulation of surface reactions by placement of a 2D cover. The concept "catalysis under cover" can be applied to reactions between two opposite 2D walls interacting with each other through van der Waals forces. The concept helps in the design of high-performance nanocatalysts interfacing with 2D material overlayers.

The research group demonstrated the confinement-induced modulation of surface reactivity in a Pt-catalyzed oxygen reduction reaction (ORR) under 2D covers. It is known that oxygen binding to Pt is relatively strong and all means of weakening this binding can be used to promote the reaction. When placing different 2D materials such as graphene and h-BN on the surface, oxygen binding with Pt weakens, thus effectively enhancing ORR activity.

Confined catalysis under 2D materials can be applied to supported nanocatalysts. Metal nanoparticles may be encapsulated by 2D materials, thus forming core-shell nanostructures. The active core structures are well protected by the outer shells and catalyst stability is improved. Furthermore, catalyst activity can be enhanced by the confinement of the outer shells.
-end-
This study was supported by the National Natural Science Foundation of China, the Ministry of Science and Technology of China, the Strategic Priority Research Program of the Chinese Academy of Sciences, and the Collaborative Innovation Center of Chemistry for Energy Materials.

Chinese Academy of Sciences Headquarters

Related Graphene Articles:

How to stack graphene up to four layers
IBS research team reports a novel method to grow multi-layered, single-crystalline graphene with a selected stacking order in a wafer scale.
Graphene-Adsorbate van der Waals bonding memory inspires 'smart' graphene sensors
Electric field modulation of the graphene-adsorbate interaction induces unique van der Waals (vdW) bonding which were previously assumed to be randomized by thermal energy after the electric field is turned off.
Graphene: It is all about the toppings
The way graphene interacts with other materials depends on how these materials are brought into contact with the graphene.
Discovery of graphene switch
Researchers at Japan Advanced Institute of Science and Technology (JAIST) successfully developed the special in-situ transmission electron microscope technique to measure the current-voltage curve of graphene nanoribbon (GNR) with observing the edge structure and found that the electrical conductance of narrow GNRs with a zigzag edge structure abruptly increased above the critical bias voltage, indicating that which they are expected to be applied to switching devices, which are the smallest in the world.
New 'brick' for nanotechnology: Graphene Nanomesh
Researchers at Japan advanced institute of science and technology (JAIST) successfully fabricated suspended graphene nanomesh (GNM) by using the focused helium ion beam technology.
Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.
Graphene Flagship publishes handbook of graphene manufacturing
The EU-funded research project Graphene Flagship has published a comprehensive guide explaining how to produce and process graphene and related materials (GRMs).
How to induce magnetism in graphene
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechani-cal, electronic and optical properties.
Graphene: The more you bend it, the softer it gets
New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene -- a question that has eluded scientists since graphene was first isolated.
How do you know it's perfect graphene?
Scientists at the US Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.
More Graphene News and Graphene Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.