Nav: Home

Going with the flow: The forces that affect species' movements in a changing climate

May 23, 2017

Ocean currents affect how climate change impacts movements of species to cooler regions.

A new study published in Scientific Reports provides novel insight into how species' distributions change from the interaction between climate change and ocean currents.

As the climate gets warmer, species migrate to new regions where conditions are more tolerable, such as higher latitudes, deeper waters, or higher terrain. This leads to a shift in their geographical range that can produce significant changes to ecosystems and serious socioeconomic and human health implications. But their prediction is difficult because of the complex interactions between changes in climate and other existing human, environmental and biological factors.

"External directional forces, such as water and air currents, are one of those important but overlooked processes that act as conveyor belts facilitating or hindering the dispersion of species" says Dr. Jorge García Molinos, the lead author at the Arctic Research Center of Hokkaido University. "How the movement of climate relates to the movement of water can offer valuable insight to better understand how species track a shifting climate."

García Molinos and his collaborators in the UK and Germany have developed a simple metric to capture the directional agreement between surface ocean currents and warming. They used it in combination with other parameters to build an explanatory model for 270 range shifts in marine biota reported around the globe.

They found that species expanded their range faster and kept track of climate better when ocean currents matched the direction of warming. "We were expecting ocean currents to be most influential at the leading 'cold' edge of a species' range, where warming represents an opportunity for the expansion of its range," comments García Molinos. "In those situations it's a little bit like a conveyor belt at an airport terminal. If you want to get to your boarding gate and you walk with the belt, you approach the gate faster than if you just stand on it passively. If you take the belt that goes in the opposite direction you will need to walk fast or even run to make progress."

However, matching ocean currents and warming unexpectedly slowed down range contractions, or the speed of withdrawal at the "warm" edges. "This was somehow a surprise because we were expecting contraction rates to be mainly driven by the rate of warming," says co-author Prof. Michael T. Burrows. The authors hypothesized this effect to be related to how currents link local populations within a species' range. Populations of the same species living in warmer waters are naturally adapted to higher temperatures than those inhabiting colder waters. Where currents go in the same direction as warming, populations adapted to warmer conditions would seed individuals into those thriving in cooler waters, which could result in increased genetic variation and adaptation to warming, therefore slowing contraction rates.

"Our study suggests how directional forces such as ocean or air currents can influence the coupling between climate change and biogeographical shifts. Our simple metric can be used to improve predictions of distribution shifts and help explain differences in expansion and contraction rates among species," concludes García Molinos.
-end-


Hokkaido University

Related Climate Change Articles:

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.
Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

How to Win Friends and Influence Baboons
Baboon troops. We all know they're hierarchical. There's the big brutish alpha male who rules with a hairy iron fist, and then there's everybody else. Which is what Meg Crofoot thought too, before she used GPS collars to track the movements of a troop of baboons for a whole month. What she and her team learned from this data gave them a whole new understanding of baboon troop dynamics, and, moment to moment, who really has the power.  This episode was reported and produced by Annie McEwen. Support Radiolab by becoming a member today at Radiolab.org/donate.