Painless real-time proteomics may one day speed up cancer surgery

May 23, 2018

Isabelle Fournier and her team are out to change surgical oncology.

"Better surgery is associated with better prognosis and higher survival," said Fournier, a professor at the University of Lille and co-director of a proteomics center of INSERM, the French national institute of health. Her laboratory has worked for several years on a device they call the SpiderMass that will enable surgeons to look for markers of cancer in a living patient's tissue, during an operation. In an article in Molecular & Cellular Proteomics, the team reports on an important step toward finding protein biomarkers during surgery.

Surgery to remove a primary tumor involves a wait. After the tumor and some healthy surrounding tissue are removed, the surgical team pauses while a pathologist checks the tissue margins under a microscope. Although this process is important for preventing recurrence of the cancer, it can add up to 45 risky minutes under anesthesia.

With the new device, Fournier said, "We think that it is possible to open the way to in vivo real-time proteomics," which could help surgeons find stray cancer cells faster, perhaps even as they make incisions.

Fournier's device uses mass spectrometry, which measures the mass of molecules from complex mixtures. But turning an in vivo tissue sample into gas phase ions for measurements can be a challenge. Until now, no one knew how to extract ions from living tissues without doing harm.

So Fournier's team got creative. Riffing on MALDI, an ionization strategy that uses a carrier molecule mixed with the analyte of interest, they decided to use the water that makes up a majority of human tissue as a carrier to produce a water-assisted laser desorption/ionization, or WALDI. If they could excite the water in a tiny area, it should vaporize, taking ionized organic molecules with it.

"It was an idea at the beginning, and many people thought that it would not work," Fourier said. "Finally, we have it working beautifully."

The team built a pulsed laser excitation device tuned to heat water precisely by causing vibration in the oxygen-hydrogen bond. In a 2016 paper, they described using this laser to ionize the outermost layer of tissue, penetrating less than one-twentieth of a millimeter. The human volunteers reported a slight tingling sensation. But the ions that appeared were mostly small molecules and lipids, which are more apt than proteins to adopt a negative charge. The team hoped to measure proteins as well.

In this new paper, Fournier and colleagues report that they have cracked the protein puzzle. By using a more sensitive mass spectrometer and looking for positively instead of negatively charged ions, they found peaks representing purified proteins they had introduced into a cow liver sample. Now that they know the proteins are detectable, the next step will be finding ways to amplify the protein signal over more abundant lipids and metabolites.

In the meantime, the device is already in use for four-legged patients. Fournier's lab has worked with the veterinary biotech company Oncovet Clinical Research to run a pilot trial, comparing biopsies from pet dogs with sarcoma to healthy tissues. The team developed a lipidomics- and metabolomics-based classification system to robustly identify healthy, necrotic and cancerous tissues. Soon, they will introduce a prototype into a veterinary operating room. If it is successful there, Fournier said, she hopes to reach human clinics, improving tumor removal surgery to give patients better health outcomes.

See a video about the Spidermass here.
-end-
About Molecular & Cellular Proteomics

Molecular & Cellular Proteomics (MCP) showcases research into proteomes, large-scale sets of proteins from different organisms or biological contexts. The journal publishes work that describes the structural and functional properties of proteins and their expression, particularly with respect to developmental time courses. Emphasis is placed on determining how the presence or absence of proteins affect biological responses, and how the interaction of proteins with their cellular partners influences their functions. For more information about MCP, visit http://www.mcponline.org.

About the American Society for Biochemistry and Molecular Biology

The ASBMB is a nonprofit scientific and educational organization with more than 11,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in government laboratories, at nonprofit research institutions and in industry. The Society publishes three journals: the Journal of Biological Chemistry, the Journal of Lipid Research, and Molecular and Cellular Proteomics. For more information about ASBMB, visit http://www.asbmb.org.

American Society for Biochemistry and Molecular Biology

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.