Nav: Home

Rehabilitating lactate: From poison to cure

May 23, 2018

George Brooks has been trying to reshape thinking about lactate - in the lab, the clinic and on the training field - for more than 40 years, and finally, it seems, people are listening. Lactate, it's becoming clear, is not a poison, it's the antidote.

In a recent article in the journal Cell Metabolism, Brooks, a professor of integrative biology at the University of California, Berkeley, reviews the history of the misunderstanding of lactate - often called lactic acid - a small molecule that plays a big role in metabolism. Typically labeled a "waste" product produced by muscles because lactate rises to high levels in the blood during extreme exercise, athletic trainers and competitive athletes think of lactate as the cause of muscle fatigue, reduced performance and pain.

Starting in the 1970s, however, Brooks, his students, postdoctoral fellows and staff were the first to show that lactate wasn't waste. It was a fuel produced by muscle cells all the time and often the preferred source of energy in the body: The brain and heart both run more efficiently and more strongly when fueled by lactate than by glucose, another fuel that circulates through the blood.

"It's a historic mistake," Brooks said. "It was thought that lactate is made in muscles when there is not enough oxygen. It has been thought to be a fatigue agent, a metabolic waste product, a metabolic poison. But the classic mistake was to note that when a cell was under stress, there was a lot of lactate, then blame it on lactate. The proper interpretation is that lactate production is a strain response, it's there to compensate for metabolic stress. It is the way cells push back on deficits in metabolism."

Gradually, physiologists, nutritionists, clinicians and sports medicine practitioners are beginning to realize that high lactate levels seen in the blood during illness or after injury, such as severe head trauma, are not a problem to get rid of, but, in contrast, a key part of the body's repair process that needs to be bolstered.

"After injury, adrenaline will activate the sympathetic nervous system and that will give rise to lactate production," Brooks said. "It is like gassing up the car before a race."

Without this added fuel, the body wouldn't have enough energy to repair itself, and Brooks says that studies suggest that lactate supplementation during illness or after injury could speed recovery. Over the course of decades of research, Brooks has discovered that there are at least three main uses of lactate in the body: It's a major fuel source, it's the major material to support blood sugar level and it's a powerful signal for metabolic adaptation to stress.

"The reason I wrote the review is that people in all these different disciplines are seeing different effects of lactate, and I am pulling it all together," said Brooks. "Lactate formulations have been used for decades to fuel athletes during prolonged exertions; it's been used widely for resuscitation after injury and to treat acidosis. Now, in clinical experiments and trials, lactate is being used to help control blood sugar after injury, to fuel the brain after brain injury, to treat inflammation and swelling, for resuscitation in pancreatitis, hepatitis and dengue infection, to fuel the heart after myocardial infarction and to manage sepsis."

Brooks's research has already benefitted endurance athletes. In 1989, he worked with a sports firm to create an energy drink called Cytomax that includes a lactate polymer that can gives athletes an energy boost before and during competition. A combination of lactate, glucose and fructose, it takes advantage of the different ways the body uses fuel: lactate can get into the blood twice as fast as glucose - peaking in just 15 compared to 30 minutes after drinking. Most sports drinks contain only glucose and fructose.

Lactate shuttle

Brooks is a physiologist who has focused on exercise and nutrition since joining the UC Berkeley faculty in 1971. He discovered that normal muscle cells produce lactate all the time, and coined the term "lactate shuttle" to describe the feedback loops by which lactate is an intermediary supporting the body's cells in many tissues and organs.

We all store energy in several forms: as glycogen, made from carbohydrates in the diet and stored in the muscles; and as fatty acids, in the form of triglycerides, stored in adipose tissue. When energy is needed, the body breaks down glycogen into lactate and glucose and adipose fat into fatty acids, all of which are distributed throughout the body through the bloodstream as general fuel. However, Brooks said, he and his lab colleagues have shown that lactate is the major fuel source.

Glucose and glycogen are metabolized through a complex series of steps that culminate in lactate. For almost a century, scientists and clinicians believed that lactate is only made when cells lack oxygen. However, using isotope tracers, first in lab animals and then in people, Brooks found that we make and use lactate all the time.

This is what he calls the lactate shuttle, where "producer" cells make lactate and the lactate is used by "consumer" cells. In muscle tissue, for example, the white, or "fast twitch," muscle cells convert glycogen and glucose into lactate and excrete it as fuel for neighboring red, or "slow twitch," muscle cells, where lactate is burned in the mitochondrial reticulum to produce the energy molecule ATP that powers muscle fibers. Brooks was the first to show that the mitochondria are an interconnected network of tubes -- a reticulum - like a plumbing system that reaches throughout the cell cytoplasm.

The lactate shuttle is also at work as working muscles release lactate that then fuels the beating heart and improves executive function in the brain.

In discovering the lactate shuttle and mitochondrial reticulum, Brooks and his UC Berkeley colleagues have revolutionized thinking about metabolic regulation in the body; not just in the body under stress, but all the time.

For decades scientists and clinicians believed that in cells, glycogen and glucose are degraded to the lactate precursor substance called pyruvate. That turned out to be wrong, since pyruvate is always converted to lactate, and in most cells lactate rapidly enters the mitochondrial reticulum and is burned. Working with lactate tracers, isolated mitochondria, cells, tissues and intact organisms, including humans, Brooks and UC colleagues discovered what had been missed and, consequently, misinterpreted. More recently, others have used magnetic resonance spectroscopy (MRS) to confirm that lactate is continuously formed in muscles and other tissues under fully aerobic (oxygenated) conditions.

Brooks notes that lactate can be a problem if not used. Conditioning in sports is all about getting the body to produce a larger mitochondrial reticulum in cells to use the lactate and thus perform better.

Tellingly, when lactate is around, as during intense activity, the muscle mitochondria burn it preferentially, and even shut out glucose and fatty acid fuels. Brooks used tracers to show that both the heart muscle and the brain prefer lactate to glucose as fuel, and run more strongly on lactate. Lactate also signals fat tissue to stop breaking down fat for fuel.

"One of the important things about lactate is that it gets into the circulation and participates in inter-organ communication," said Jen-Chywan "Wally" Wang, a UC Berkeley professor of nutritional sciences and toxicology. "Which is why it's very important in normal metabolism and an integral part of whole-body homeostasis."

Lactate is the body's VISA

In his review, Brooks emphasizes three major roles for lactate in the body: It's a major source of energy; a precursor for making more glucose in the liver, which helps support blood sugar; and a signaling molecule, circulating in the body and blood and communicating with different tissues, such as adipose tissue, and affecting the expression of genes responsible for managing stress.

For example, studies have shown that lactate increases the production of Brain-Derived Neurotropic Factor (BDNF), which in turn, supports neuron production in the brain. And, as a fuel source, lactate immediately improves the brain's executive function, whether lactate is infused or comes from exercise.

"It's like the VISA of energetics; lactate is accepted by consumer cells everywhere it goes," he said.

The fact that lactate is an all-purpose fuel makes it a problem in cancer, however, and some scientists are looking for ways to block the lactate shuttles in cancer cells to cut off their energy supplies.

"Recognition that lactate shuttles among producer and consumer cells in tumors offers the exciting possibility of reducing carcinogenesis and tumor size by blocking producer and recipient arms of lactate shuttles within and among tumor cells," he wrote in his review.

All this presages a turnaround in the appreciation of lactate, though Brooks admits that textbooks - except for his own, Exercise Physiology: Human Bioenergetics and Its Applications, now in its fourth edition - still portray lactate as a bad actor.

"Lactate is the key to what is happening with metabolism," Brooks said. "That is the revolution."
-end-


University of California - Berkeley

Related Brain Injury Articles:

Brain injury causes impulse control problems in rats
New research from the University of British Columbia confirms for the first time that even mild brain injury can result in impulse control problems in rats.
Which kids will take longer to recover from brain injury?
A new biomarker may help predict which children will take longer to recover from a traumatic brain injury (TBI), according to a preliminary study published in the March 15, 2017, online issue of Neurology, the medical journal of the American Academy of Neurology.
Researchers identify how inflammation spreads through the brain after injury
Researchers have identified a new mechanism by which inflammation can spread throughout the brain after injury.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
Therapy for abnormal heartbeats may cause brain injury
A common treatment for irregular heartbeats known as catheter ablation may result in the formation of brain lesions when it is performed on the left side of the heart, according to new research at UC San Francisco.
How brain tissue recovers after injury
A Kobe University research team has pinpointed the mechanism underlying astrocyte-mediated restoration of brain tissue after an injury.
Depression in soldiers linked to brain disruption from injury
Using multiple brain imaging techniques, researchers have found that a disruption of the circuitry in the brain's cognitive-emotional pathways may provide a physical foundation for depression symptoms in some service members who have suffered mild traumatic brain injury in combat.
Research finds brain changes, needs to be retrained after ACL injury
A new study shows that when you injure your knee, it changes your brain -- which could put you at risk for further injuries.
The effectiveness of treatment for individuals with brain injury or stroke
In the current issue of NeuroRehabilitation leading researchers explore the effectiveness of several neurorehabilitation treatments for individuals with brain injury or stroke.
Allen Institute releases powerful new data on the aging brain and traumatic brain injury
The Allen Institute for Brain Science has announced major updates to its online resources available at brain-map.org, including a new resource on Aging, Dementia and Traumatic Brain Injury in collaboration with UW Medicine researchers at the University of Washington, and Group Health.

Related Brain Injury Reading:

The Mild Traumatic Brain Injury Workbook: Your Program for Regaining Cognitive Function and Overcoming Emotional Pain (New Harbinger Self-Help Workbook)
by Douglas J. Mason PsyD LCSW (Author), Marc Irwin Sharfman MD (Foreword)

The Brain Injury Workbook: Exercises for Cognitive Rehabilitation (Speechmark Practical Therapy Manual)
by Trevor Powell (Author)

Manual of Traumatic Brain Injury: Assessment and Management
by Felise Zollman MD FAAN FAAMA (Editor)

The Traumatized Brain: A Family Guide to Understanding Mood, Memory, and Behavior after Brain Injury (A Johns Hopkins Press Health Book)
by Vani Rao (Author), Sandeep Vaishnavi (Author), Peter V. Rabins (Foreword)

Brain Injury Medicine, 2nd Edition: Principles and Practice
by Nathan D. Zasler MD (Editor), Douglas I. Katz MD (Editor), Ross D. Zafonte DO (Editor), David B. Arciniegas MD (Editor), M. Ross Bullock MD PHD (Editor), Jeffrey S. Kreutzer PHD ABPP (Editor)

Chicken Soup for the Soul: Recovering from Traumatic Brain Injuries: 101 Stories of Hope, Healing, and Hard Work
by Amy Newmark (Author), Dr. Carolyn Roy-Bornstein (Author), Lee Woodruff (Foreword)

Brain Injury Survival Kit: 365 Tips, Tools & Tricks to Deal with Cognitive Function Loss
by Dr. Cheryle Sullivan MD (Author)

Coping with Concussion and Mild Traumatic Brain Injury: A Guide to Living with the Challenges Associated with Post Concussion Syndrome and Brain Trauma
by Diane Roberts Stoler (Author), Barbara Albers Hill (Author)

Head Cases: Stories of Brain Injury and Its Aftermath
by Michael Paul Mason (Author)

The Brain Injury Rehabilitation Workbook
by Rachel Winson (Editor), Barbara A. Wilson (Editor), Andrew Bateman (Editor)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Right To Speak
Should all speech, even the most offensive, be allowed on college campuses? And is hearing from those we deeply disagree with ... worth it? This hour, TED speakers explore the debate over free speech. Guests include recent college graduate Zachary Wood, political scientist Jeffrey Howard, novelist Elif Shafak, and journalist and author James Kirchick.
Now Playing: Science for the People

#486 Volcanoes
This week we're talking volcanoes. Because there are few things that fascinate us more than the amazing, unstoppable power of an erupting volcano. First, Jessica Johnson takes us through the latest activity from the Kilauea volcano in Hawaii to help us understand what's happening with this headline-grabbing volcano. And Janine Krippner joins us to highlight some of the lesser-known volcanoes that can be found in the USA, the different kinds of eruptions we might one day see at them, and how damaging they have the potential to be. Related links: Kilauea status report at USGS A beginner's guide to Hawaii's otherworldly...