Nav: Home

Widespread permafrost degradation seen in high Arctic terrain

May 23, 2019

Rapid changes in terrain are taking place in Canada's high Arctic polar deserts due to increases in summer air temperatures.

A McGill-led study published recently in Environmental Research Letters presents close to 30 years of aerial surveys and extensive ground mapping of the Eureka Sound Lowlands area of Ellesmere and Axel Heiberg Islands located at approximately 80 °N. The research focuses on a particular landform (known as a retrogressive thaw slump) that develops as the ice within the permafrost melts and the land slips down in a horseshoe-shaped feature. The presence of these landforms is well documented in the low Arctic. But due to the extremely cold climate in high Arctic polar deserts (where average annual ground and air temperatures are -16.5 °C/2.3 °F, and -19.7 °C /-3.46 °F, respectively), and the fact that the permafrost is over 500 metres (or about 1/3 of a mile) thick, it had been assumed this landscape was stable. But the McGill-led research team found that this has not been the case.

"Our study suggests that the warming climate in the high Arctic, and more specifically the increases in summer air temperatures that we have seen in recent years, are initiating widespread changes in the landscape," says Melissa Ward Jones, the study's lead author and a PhD candidate in McGill's Department of Geography.

The research team noted that:
  • There has been a widespread development of retrogressive thaw slumps in high Arctic polar deserts over a short period, particularly during the unusually warm summers of 2011, 2012 and 2015;
  • That the absence of vegetation and layers of organic soil in these polar deserts make permafrost in the area particularly vulnerable to increases in summer air temperatures;
  • Despite its relatively short duration, the thaw season (which lasts for just 3-6 weeks a year) initially drives the development of slumps and their later expansion in size, as their headwall retreats; and
  • Over a period of a few years after the initiation of slumps, study results suggest various factors related to terrain (e.g. slope) become more important than air temperature in maintaining active slumps.
"Despite the cold polar desert conditions that characterize much of the high Arctic, this research clearly demonstrates the complex nature of ice-rich permafrost systems and climate-permafrost interaction," adds Wayne Pollard, a professor in McGill's Department of Geography and co-author on the study. "Furthermore, it raises concerns about the over simplification of some studies that generalize about the links between global warming and permafrost degradation."
-end-
To read "Rapid initialization of retrogressive thaw slumps in the Canadian high Arctic and their response to climate and terrain factors" by Melissa K. Ward Jones, Wayne H. Pollard and Benjamin M. Jones in Environmental Research Letters: https://iop.altmetric.com/details/60342117

The research was funded by the Association of Canadian Universities for Northern Studies (ACUNS), the Natural Sciences and Engineering Research Council (NSERC), the Fonds de recherche du Québec - Nature et technologies (FRQNT), David Erb Fellowship, Eben Hobson Fellowship and the Northern Scientific Training Program (NSTP).

McGill University

Related Permafrost Articles:

Arctic permafrost melting will aggravate the greenhouse effect
Scientists from Russia and the United States studied the composition of the deep layers of permafrost in Eastern Siberia to better understand the hazards of permafrost thawing to our planet and its inhabitants.
Gene transcripts from ancient wolf analyzed after 14,000 years in permafrost
RNA -- the short-lived transcripts of genes -- from the 'Tumat puppy', a wolf of the Pleistocene era has been isolated, and its sequence analyzed in a new study by Oliver Smith of the University of Copenhagen and colleagues publishing on July 30 in the open-access journal PLOS Biology.
Widespread permafrost degradation seen in high Arctic terrain
Rapid changes in terrain are taking place in Canada's high Arctic polar deserts due to increases in summer air temperatures.
Arctic rivers provide fingerprint of carbon release from thawing permafrost
The feedback between a warming climate and accelerated release of carbon currently frozen into permafrost around the Arctic is one of the grand challenges in current climate research.
Rapid permafrost thaw unrecognized threat to landscape, global warming researcher warns
University of Guelph Prof. Merritt Turetsky and an international team of researchers asssessed abrupt thaw studies across the permafrost zone to estimate the overall effect.
More Permafrost News and Permafrost Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...