Nav: Home

Phase transitions: The math behind the music

May 23, 2019

CLEVELAND--Next time you listen to a favorite tune or wonder at the beauty of a natural sound, you might also end up pondering the math behind the music.

You will, anyway, if you spend any time talking with Jesse Berezovsky, an associate professor of physics at Case Western Reserve University. The longtime science researcher and a part-time viola player has become consumed with understanding and explaining the connective tissue between the two disciplines--more specifically, how the ordered structure of music emerges from the general chaos of sound.

"Why is music composed according to so many rules? Why do we organize sounds in this way to create music?" he asks on a short explainer video he recently made about his research. "To address that question, we can borrow methods from a related question:

'How do atoms in a random gas or liquid come together to form a particular crystal?"

Phase transitions in physics, music

The answer in physics--and music, Berezovsky argues--is called "phase transitions" and comes about because of a balance between order and disorder, or entropy, he said.

"We can look at a balance--or a competition--between dissonance and entropy of sound--and see that phase transitions can also occur from disordered sound to the ordered structures of music," he said.

Mixing math and music is not new. Mathematicians have long been fascinated with the structure of music. The American Mathematical Society, for example, devotes part of its web page to exploring the idea (Pythagoras, anyone? "There is geometry in the humming of the strings, there is music in the spacing of the spheres.")

But Berezovsky contends that much of the thinking, until now, has been a top-down approach, applying mathematical ideas to existing musical compositions as a way of understanding already existing music.

He contends he's uncovering the "emergent structures of musical harmony" inherent in the art, just as order comes from disorder in the physical world. He believes that could mean a whole new way of looking at music of the past, present and future.

"I believe that this model could shed light on the very structures of harmony, particularly in Western music," Berezovsky said. "But we can take it further: These ideas could provide a new lens for studying the entire system of tuning and harmony across cultures and across history--maybe even a road map for exploring new ideas in those areas.

"Or for any of us, maybe it's just another way of just appreciating music--seeing the emergence of music the way we do the formation of snowflakes or gemstones."

Emergent structures in music

Berezovsky said his theory is more than just an illustration of how we think about music. Instead, he says the mathematical structure is actually the fundamental underpinning of music itself, making the resultant octaves and other arrangements a foregone conclusion, not an arbitrary invention by humans.

His research, published May 17 in the journal Science Advances, "aims to explain why basic ordered patterns emerge in music, using the same statistical mechanics framework that describes emergent order across phase transitions in physical systems."

In other words, the same universal principles that guide the arrangement of atoms when they organize into a crystal from a gas or liquid are also behind the fact that "phase transitions occur in this model from disordered sound to discrete sets of pitches, including the 12-fold octave division used in Western music."

The theory also speaks to why we enjoy music--because it is caught in the tension between being too dissonant and too complex.

A single note played continuously would completely lack dissonance (low "energy"), but would be wholly uninteresting to the human ear, while an overly complex piece of music (high entropy) is generally not pleasing to the human ear. Most music--across time and cultures--exists in that tension between the two extremes, Berezovsky said.
-end-


Case Western Reserve University

Related Physics Articles:

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.
Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.
2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'
Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.
Physics at the edge
In 2005, condensed matter physicists Charles Kane and Eugene Mele considered the fate of graphene at low temperatures.
Using physics to print living tissue
3D printers can be used to make a variety of useful objects by building up a shape, layer by layer.
When the physics say 'don't follow your nose'
Engineers at Duke University are developing a smart robotic system for sniffing out pollution hotspots and sources of toxic leaks.
The coming of age of plasma physics
The story of the generation of physicists involved in the development of a sustainable energy source, controlled fusion, using a method called magnetic confinement.
Physics: Not everything is where it seems to be
Scientists at TU Wien, the University of Innsbruck and the ÖAW have for the first time demonstrated a wave effect that can lead to measurement errors in the optical position estimation of objects.
'Fudge factors' in physics?
What if your theory to model and predict the electronic structure of atoms isn't accounting for dispersion energy?
More Physics News and Physics Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.