Nav: Home

Why you should care about better fiber optics

May 23, 2019

Fibre optic research can give us better medical equipment, improved environmental monitoring, more media channels - and maybe better solar panels.

"Optical fibres are remarkably good at transmitting signals without much loss in the transfer," says Professor Ursula Gibson at NTNU's Department of Physics.

However.

"Glass fibres are good up to a wavelength of about 3 microns. More than that, and they're not so good," she says.

And that is sometimes problematic.Telecom uses the the near infrared part of the wave spectrum because it has the least loss of energy when passing through glass.

But if we could utilize even longer wavelengths, the benefits would include better medical diagnoses and more precise environmental monitoring of airborne gas particles.Longer wavelengths could also mean more space for media channels, since the competition is fierce for the wavelengths where free space transmission normally takes place now.

Gallium antimonide

Optical glass fibres are not made of pure glass, but require a core with a bit of some other material to transmit signals.

This is clearly quite complicated to achieve, and the methods have gradually been perfected over the last 50 years.At NTNU, various research groups have been experimenting with optical fibres using a semiconductor core of silicon (Si) and gallium antimonide (GaSb) instead of small amounts of germanium oxide, which is used in silica fibres now.Some of the researchers' latest research findings have now been presented in Nature Communications.

PhD candidate Seunghan Song is the first author of the article in the prestigious journal.The article "describes a method for making optical fibres where part of the core that is gallium antimonide, which can emit infrared light. Then the fibre is laser treated to concentrate the antimonide," says Gibson.

This process is carried at room temperature. The laser processing affects the properties of the core.

Cables and solar cells

Silicon is well known as the most commonly used material in solar panels. Along with oxygen, silicon is the most common material in glass and glass fibre cables as well.

Gallium antimonide is less typical, although others have also used the same composition in optical instruments. But not in the same way.

With the new method, the gallium antimonide is initially distributed throughout the silicon. This is a simpler and cheaper method than others to grow crystals, and the technology offers many possible applications.

"Our results are first and foremost a step towards opening up larger portion of the electromagnetic wave spectrum for optical fibre transmission," Gibson says.

Learning about the fundamental properties of the semiconductor materials in glass fibres allows us to make more efficient use of rare resources like gallium.
-end-
Source: Nature Communications. Laser restructuring and photoluminescence of glass-clad GaSb/Si-core optical fibres . S. Song, K. Lønsethagen, F. Laurell, T. W. Hawkins, J. Ballato, M. Fokine & U. J. Gibson. Published: 17 April 2019.
https://www.nature.com/articles/s41467-019-09835-1
https://doi.org/10.1038/s41467-019-09835-1

Norwegian University of Science and Technology

Related Solar Panels Articles:

Parker Solar Probe traces solar wind to its source on sun's surface: coronal holes
New data from the Parker Solar Probe, which got closer to the sun than any other spacecraft, allowed physicists to map the source of a major component of the solar wind that continually peppers Earth.
Study: Even short-lived solar panels can be economically viable
A new study shows that, contrary to widespread belief within the solar power industry, new kinds of solar cells and panels don't necessarily have to last for 25 to 30 years in order to be economically viable in today's market.
Researchers develop a better way to harness the power of solar panels
Researchers at the University of Waterloo have developed a way to better harness the volume of energy collected by solar panels.
Installing solar panels on agricultural lands maximizes their efficiency, new study shows
A new study finds that if less than 1% of agricultural land was converted to solar panels, it would be sufficient to fulfill global electric energy demand.
Solar panels cast shade on agriculture in a good way
Combining solar panel (photovoltaic) infrastructure and agriculture creates a mutually beneficial relationship.
Solar energy becomes biofuel without solar cells
Soon we will be able to replace fossil fuels with a carbon-neutral product created from solar energy, carbon dioxide and water.
Breakthrough material could lead to cheaper, more widespread solar panels and electronics
Two physics research groups at the University of Kansas have generated free electrons from organic semiconductors when combined with a single atomic layer of molybdenum disulfide, a recently discovered two-dimensional semiconductor.
What happens when schools go solar?
Rooftop solar projects at schools could reduce harmful air pollution, help the environment and enhance student learning while cutting electricity costs, a new study finds.
Stanford team locates nearly all US solar panels in a billion images with machine learning
Stanford researchers have identified the GPS locations and sizes of almost all US solar power installations from a billion images.
New property revealed in graphene could lead to better performing solar panels
An international research team, co-led by a UC Riverside physicist, has discovered a new mechanism for ultra-efficient charge and energy flow in graphene, opening up opportunities for developing new types of light-harvesting devices.
More Solar Panels News and Solar Panels Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab