Nav: Home

New approach captures detailed mid-infrared images for medical diagnostics

May 23, 2019

WASHINGTON -- Researchers have developed a unique high-resolution imaging method that can capture mid-infrared spectral images of fast events or dynamic processes that take place on the order of milliseconds. This spectral range is used for many applications because it can reveal the detailed chemical composition of a sample.

"This novel approach could one day be used to prescreen medical biopsies to identify the ones that need closer examination," said Peter Tidemand-Lichtenberg, a member of the research team from DTU Fotonik in Denmark. "It could be used to look for the chemical signatures of cancer and other diseases in ways that would increase the accuracy and speed of diagnoses."

A multi-institutional group of researchers describe the new imaging approach in Optica, The Optical Society's (OSA) journal for high-impact research. They also demonstrate some of the technique's potential applications by imaging a gas flow and distinguishing cancerous and normal samples of esophageal tissue.

"Although mid-infrared spectroscopy is recognized as a powerful tool for chemical analysis, its applicability has been hampered by a lack of affordable light sources and sensitive detectors," said Tidemand-Lichtenberg. "To overcome this barrier, we used an approach that translates information from the mid-infrared region, where the chemical signatures are most distinct, to the near-infrared, where today's camera technology is most mature and sensitive."

Practical mid-infrared spectroscopy

The researchers drew on a process known as nonlinear frequency conversion in which energy is added to a photon to change its wavelength, and hence its color. Although frequency conversion, or upconversion, is often used to change the wavelength of a laser's output, the researchers from DTU Fotonik developed a detection system that could shift an entire mid-IR image into the near-infrared wavelength range while preserving all the spatial information.

The system incorporates a new mid-infrared light source developed by collaborators from The Institute of Photonic Sciences (ICFO). This single-wavelength light source can be tuned to different wavelengths and it also uses frequency conversion to generate the mid-infrared light. In fact, the researchers used the same pulsed near-infrared laser for two things: to generate the tunable mid-IR light and to achieve the image upconversion.

"This approach yields high peak power pulses in perfect synchronism, eliminating the need for sophisticated temporal control of the pulses, leading to images with a good signal-to-noise ratio," explained Tidemand-Lichtenberg. "In addition, our optical setup is designed in a way that requires very little post-processing after the images are acquired."

Imaging fast events and complex samples

The researchers demonstrated the imaging speed of their new mid-infrared upconversion spectroscopy approach by tuning the illumination laser to match the peak absorption of a gas flow and acquiring a video with 40 images per second.

They also conducted a pilot study, headed by the team members from Exeter University, in which the system was used to evaluate cancerous and healthy esophageal tissue samples. They found that morphology and spectral classification using their system matched well with the standard stained histopathology images.

"Our upconversion imaging approach is generic and constitutes a major simplification in realizing video-frame-rate, mid-infrared monochromatic imaging," said Tidemand-Lichtenberg.

"The spectral information provided by this technique could be combined with machine learning to enable faster, and possibly more objective, medical diagnostics based on chemical signatures without the need for staining."
-end-
The research project was funded by the European Commission's Innovative Training Networks and involved a collaborative team of researchers from The Institute of Photonics Sciences (ICFO) in Spain and DTU Fotonik as well as Exeter University and Gloucestershire Hospitals NHS Foundation Trust, both from the United Kingdom.

Paper: S. Junaid, S. Chaitanya Kumar, M. Mathez, M. Hermes, N. Stone, N. Shepherd, M. Ebrahim-Zadeh, P. Tidemand-Lichtenberg, C. Pedersen, "Video-rate, mid-infrared hyperspectral upconversion imaging," Optica, 6, 6, 702-708 (2019).

DOI: https://doi.org/10.1364/OPTICA.6.000708

About Optica

Optica is an open-access, online-only journal dedicated to the rapid dissemination of high-impact peer-reviewed research across the entire spectrum of optics and photonics. Published monthly by The Optical Society (OSA), Optica provides a forum for pioneering research to be swiftly accessed by the international community, whether that research is theoretical or experimental, fundamental or applied. Optica maintains a distinguished editorial board of more than 50 associate editors from around the world and is overseen by Editor-in-Chief Alex Gaeta, Columbia University, USA. For more information, visit Optica.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contacts:

Aaron Cohen
(301) 633-6773
aaroncohenpr@gmail.com

mediarelations@osa.org

The Optical Society

Related Imaging Articles:

Ultrasound imaging of the brain and liver
Ultrasound is commonly used in diagnostic imaging of the body's soft tissues, including muscles, joints, tendons and internal organs.
Major new issue of CVIA on imaging
Cardiovascular Innovations and Applications (CVIA) journal has just published a special issue on Noninvasive Cardiac Imaging with Guest Editor Dr.
Imaging at the speed of light
Over the past few years, Chunlei Guo and his research team at the University of Rochester have used lasers to manipulate the properties of target materials and make them, for instance, superhydrophilic or superhydrophobic.
Breakthrough in live coral imaging
Interdisciplinarity Scientists at University of Copenhagen (Denmark), University of Technology Sydney (Australia), and Oregon Health University (USA) have used a well-known biomedical imaging technique called optical coherence tomography (OCT) to obtain fascinating insights to the structural organization and dynamics of reef-building corals.
High-res biomolecule imaging
Tiny defects in diamonds known as nitrogen vacancy defects could lead to high-resolution images of the structure of biological molecules, according to a new study by MIT researchers.
New software automates brain imaging
When humans and animals learn and form memories, the physical structures of their brain cells change.
Live cell imaging using a smartphone
A recent study from Uppsala University shows how smartphones can be used to make movies of living cells, without the need for expensive equipment.
Many muons: Imaging the underground with help from the cosmos
Alain Bonneville, a geophysicist at Pacific Northwest National Laboratory, will present details on the muon detector for 'seeing' sequestered carbon dioxide and the comparative field tests at the American Geophysical Union Fall Meeting in San Francisco.
Imaging stroke risk in 4-D
A new MRI technique developed at Northwestern University detects blood flow velocity to identify who is most at risk for stroke, so they can be treated accordingly.
Enhancing molecular imaging with light
A new technology platform from Northwestern University is able to image molecules at the nanoscale with super-resolution.

Related Imaging Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".