Nav: Home

Efficient, stable thermoelectric module based on high-performance liquid-like materials

May 23, 2019

Based on high-performance liquid-like materials, scientists from the Shanghai Institute of Ceramics of the Chinese Academy of Sciences and Northwestern University in US innovatively fabricated a Cu2Se/Yb0.3Co4Sb12 thermoelectric module with eight n-type Ni/Ti/Yb0.3Co4Sb12 legs and eight p-type Ni/Mo/Cu2Se legs.

Their strategy goes beyond the normal design of TE modules based on traditional TE materials, thus realizing a high energy conversion efficiency of 9.1% and excellent service stability. The study was published in Joule.

The usual design of thermoelectric modules based on traditional materials only needs to realize high efficiency or high-power output through optimizing the geometry and interfaces of material legs. However, liquid-like ions present a new challenge and service stability must be included in the design of thermoelectric modules based on liquid-like materials.

During service, the voltage across liquid-like materials (Va) is directly related to the ratio of the cross-sectional areas of the p- and n-legs (Ap/An). If the liquid-like material is p-type, the larger Ap/An will lead to a smaller Va and consequently better stability during service.

In this study, scientists developed two kinds of TE modules based on liquid-like materials. They chose Cu2Se and Cu1.97S for the p-type legs and selected Yb0.3Co4Sb12-filled skutterudite for the n-type legs. The results showed that the Cu1.97S/Yb0.3Co4Sb12 TE module is not stable during service, while the Cu2Se/Yb0.3Co4Sb12 TE module is quite stable when Ap/An is higher than four.

Three-dimensional numerical analysis showed that high energy conversion efficiency requires that Ap/An be between two and eight. Thus, Ap/An values between four and eight are required to simultaneously maximize conversion efficiency and achieve good stability.

The scientists realized a maximum energy conversion efficiency of 9.1% for the Cu2Se/Yb0.3Co4Sb12 thermoelectric module, a record-high energy conversion efficiency among high-temperature thermoelectric modules. The long-term aging test confirmed the good stability of the module.

This strategy can also be used to design new TE modules based on other liquid-like materials such as Ag9GaSe6 and Zn4Sb3.

Thermoelectric technology can realize direct conversion between heat and electricity. Due to the advantages of no noise, no moving parts, and high reliability, it has attracted great attention as an alternative way to very efficiently utilize energy.
-end-


Chinese Academy of Sciences Headquarters

Related Scientists Articles:

Scientists discover a 2-D magnet
A team led by the University of Washington and the Massachusetts Institute of Technology has for the first time discovered magnetism in the 2-D world of monolayers, or materials that are formed by a single atomic layer.
Scientists present El Nino
The ecological effects of the strong 2015-2016 El Niño. Carbon burial in aquatic ecosystems.
Russian scientists slowed down aging
A group of Russian and Swedish scientists just published a breakthrough paper, reporting results of a joint study by Lomonosov Moscow State University and Stockholm university.
Scientists develop new antibiotic for gonorrhea
Scientists at the University of York have harnessed the therapeutic effects of carbon monoxide-releasing molecules to develop a new antibiotic which could be used to treat the sexually transmitted infection gonorrhea.
Biodiversity needs citizen scientists
Could birdwatching or monitoring tree blossoms in your community make a difference in global environmental research?
More Scientists News and Scientists Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.