Nav: Home

UC Davis study shows temperature alters developing nervous system in frogs

May 23, 2019

(SACRAMENTO, Calif.) -- Can the environment affect how the spinal cord develops specialized circuitry, or is that process hardwired, following prescribed genetic instructions turned on early in the embryo?

A UC Davis study that compared the effects of cold and warm temperatures on the development of frog eggs into larvae found that environmental temperature significantly changes how the nervous system develops.

The study, which appears online May 23 in the journal Current Biology, found environmental temperature activated temperature-sensitive channels, influencing gene expression and altering neurodevelopment. The research, while conducted in frogs, has parallels across species, including humans.

"We found that the temperature-sensitive channel TRPM8 drives changes in the developing nervous system, allowing frogs to adapt to the environment," said Laura Borodinsky, professor of physiology and membrane biology at UC Davis School of Medicine and study senior author.

"Larvae grown in cold temperatures had more neurons responsible for movement - a crucial function that better equips young frogs to escape predators and other potential dangers," she said. "They also had larger muscle mass and a stronger swim response than those reared in warmer temperatures when tested at cold temperatures."

Temperature important for neurodevelopment in humans

Temperature is an important factor in the development of the nervous system in humans. Newborns, especially premature babies, do not develop the ability to regulate body temperature until a few months after birth or even longer. Studies also suggest that fever during pregnancy may affect the developing brain and nervous system, increasing the risk of autism spectrum disorder and schizophrenia.

Borodinsky believes when temperature changes are sudden and occur during critical periods of development - or when molecular mechanisms to adapt to these changes are not working - disruptions in nervous system development can affect health.

Temperature channels as a way the environment changes gene expression

Temperature-sensitive channels belong to a diverse family of ion channels, TRP channels, that respond to a range of conditions. While some TRP channels are temperature sensors, others are sensitive to pain, pH, touch, light and sound. These cellular pathways that allow organisms to sense temperature are well-conserved through evolution and present across species.

For the study, Kira A. Spencer, first author of the paper and a former graduate student in the Neuroscience Graduate program at UC Davis, raised fertilized frog eggs at cold or warm temperatures in Petri dishes. At the larval stage, they measured responses to light touch and swimming responses, and number of spinal motor neurons. They assessed the dependence of spontaneous electrical activity, which drives many aspects of neuronal differentiation, on temperature, as well as the genetic factors that regulate developing spinal cord cells and the role of the cold-temperature channel TRPM8.

"We found that the cold-temperature sensitive channel TRPM8 mediates the developmental changes that give frog larvae an advantage and allow them to function optimally in cold temperatures," Spencer said.

"Our results provide insight into how the environment influences gene expression during development, and point to a promising avenue for exploring how genes and the environment interact, including the role that other TRP channels play in nervous system development and disease."
-end-
Other study authors include Yesser Hadj Belgacem, Olesya Visina, Sangwoo Shim and Henry Genus.

The research was supported with from the National Science Foundation (1120796), National Institute of Neurological Disorders and Stroke (RO1NS073055) and Shriners Hospital for Children (86500-NCA, 85220-NCA, 85300-NCA).

Page proofs of the study "Growth at cold temperature increases the number of motor neurons to optimize locomotor function" are available from the study authors as well as the UC Davis Health Public Affairs Department and Cell News Office.

University of California - Davis Health

Related Nervous System Articles:

Fewer scars in the central nervous system
Researchers have discovered the influence of the coagulation factor fibrinogen on the damaged brain.
Polymerized estrogen shown to protect nervous system cells
In research published today in Nature Communications, an interdisciplinary team from Rensselaer Polytechnic Institute demonstrated how estrogen -- a natural hormone produced in the body -- can be polymerized into a slow-releasing biomaterial and applied to nervous system cells to protect those cells and even promote regeneration.
Discovery concerning the nervous system overturns a previous theory
It appears that when our nervous system is developing, only the most viable neurons survive, while immature neurons are weeded out and die.
Autonomic nervous system appears to function well regardless of mode of childbirth
'In a low-risk group of babies born full-term, the autonomic nervous system and cortical systems appear to function well regardless of whether infants were exposed to labor prior to birth,' says Sarah B.
First step to induce self-repair in the central nervous system
Injured axons instruct Schwann cells to build specialized actin spheres to break down and remove axon fragments, thereby starting the regeneration process.
First complete wiring diagram of an animal's nervous system
In a study published online today in Nature, researchers at Albert Einstein College of Medicine describe the first complete wiring diagram of the nervous system of an animal, the roundworm Caenorhabditis elegans, used by scientists worldwide as a model organism.
Scientists unlock new role for nervous system in regeneration
Biologists have developed a computational model of flatworm regeneration to answer an important question in regeneration research - what are the signals that determine the rebuilding of specific anatomical structures?
Research gives new insight into the evolution of the nervous system
Pioneering research has given a fascinating fresh insight into how animal nervous systems evolved from simple structures to become the complex network transmitting signals between different parts of the body.
Researchers solve mystery of how ALL enters the central nervous system
A research team led by Duke Cancer Institute scientists has found that this blood cancer infiltrates the central nervous system not by breaching the blood-brain barrier, but by evading the barrier altogether.
The VIPs of the nervous system
Biologists at Washington University in St Louis unlocked a cure for jet lag in mice by activating a small subset of the neurons involved in setting daily rhythms.
More Nervous System News and Nervous System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.