Nav: Home

UC Davis study shows temperature alters developing nervous system in frogs

May 23, 2019

(SACRAMENTO, Calif.) -- Can the environment affect how the spinal cord develops specialized circuitry, or is that process hardwired, following prescribed genetic instructions turned on early in the embryo?

A UC Davis study that compared the effects of cold and warm temperatures on the development of frog eggs into larvae found that environmental temperature significantly changes how the nervous system develops.

The study, which appears online May 23 in the journal Current Biology, found environmental temperature activated temperature-sensitive channels, influencing gene expression and altering neurodevelopment. The research, while conducted in frogs, has parallels across species, including humans.

"We found that the temperature-sensitive channel TRPM8 drives changes in the developing nervous system, allowing frogs to adapt to the environment," said Laura Borodinsky, professor of physiology and membrane biology at UC Davis School of Medicine and study senior author.

"Larvae grown in cold temperatures had more neurons responsible for movement - a crucial function that better equips young frogs to escape predators and other potential dangers," she said. "They also had larger muscle mass and a stronger swim response than those reared in warmer temperatures when tested at cold temperatures."

Temperature important for neurodevelopment in humans

Temperature is an important factor in the development of the nervous system in humans. Newborns, especially premature babies, do not develop the ability to regulate body temperature until a few months after birth or even longer. Studies also suggest that fever during pregnancy may affect the developing brain and nervous system, increasing the risk of autism spectrum disorder and schizophrenia.

Borodinsky believes when temperature changes are sudden and occur during critical periods of development - or when molecular mechanisms to adapt to these changes are not working - disruptions in nervous system development can affect health.

Temperature channels as a way the environment changes gene expression

Temperature-sensitive channels belong to a diverse family of ion channels, TRP channels, that respond to a range of conditions. While some TRP channels are temperature sensors, others are sensitive to pain, pH, touch, light and sound. These cellular pathways that allow organisms to sense temperature are well-conserved through evolution and present across species.

For the study, Kira A. Spencer, first author of the paper and a former graduate student in the Neuroscience Graduate program at UC Davis, raised fertilized frog eggs at cold or warm temperatures in Petri dishes. At the larval stage, they measured responses to light touch and swimming responses, and number of spinal motor neurons. They assessed the dependence of spontaneous electrical activity, which drives many aspects of neuronal differentiation, on temperature, as well as the genetic factors that regulate developing spinal cord cells and the role of the cold-temperature channel TRPM8.

"We found that the cold-temperature sensitive channel TRPM8 mediates the developmental changes that give frog larvae an advantage and allow them to function optimally in cold temperatures," Spencer said.

"Our results provide insight into how the environment influences gene expression during development, and point to a promising avenue for exploring how genes and the environment interact, including the role that other TRP channels play in nervous system development and disease."
Other study authors include Yesser Hadj Belgacem, Olesya Visina, Sangwoo Shim and Henry Genus.

The research was supported with from the National Science Foundation (1120796), National Institute of Neurological Disorders and Stroke (RO1NS073055) and Shriners Hospital for Children (86500-NCA, 85220-NCA, 85300-NCA).

Page proofs of the study "Growth at cold temperature increases the number of motor neurons to optimize locomotor function" are available from the study authors as well as the UC Davis Health Public Affairs Department and Cell News Office.

University of California - Davis Health

Related Nervous System Articles:

Rare cells are 'window into the gut' for the nervous system
Specialized cells in the gut sense potentially noxious chemicals and trigger electrical impulses in nearby nerve fibers, according to a new study led by UC San Francisco scientists.
Study overturns seminal research about the developing nervous system
New research by scientists at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA overturns a long-standing paradigm about how axons grow during embryonic development.
Sympathetic nervous system is critical in regulating energy expenditure and thermogenesis
New study suggests that your brain, not your white blood cells, keeps you warm.
As fins evolve to help fish swim, so does the nervous system
The sensory system in fish fins evolves in parallel to fin shape and mechanics, and is specifically tuned to work with the fish's swimming behavior, according to new research from the University of Chicago.
Antibodies as 'messengers' in the nervous system
Antibodies are able to activate human nerve cells within milliseconds and hence modify their function -- that is the surprising conclusion of a study carried out at Human Biology at the Technical University of Munich (TUM).
More Nervous System News and Nervous System Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...