Nav: Home

How a zebrafish could help solve the mysteries of genetic brain disease

May 23, 2019

COLUMBUS, Ohio - A close look at the rapidly developing zebrafish embryo is helping neuroscientists better understand the potential underpinnings of brain disorders, including autism and schizophrenia.

Researchers at The Ohio State University were interested in understanding changes in neurological development that arise from a genetic defect associated with neurological disease - specifically, the loss of a gene called Protocadherin-19, or PCDH19. The link between the mutation and brain disorders is well-established, but the mechanics of why one might lead to the other have been a mystery.

The new study, published online this month in the journal eNeuro, points to a "clustering" of cellular interactions in the brain that may disrupt normal development and brain health.

"Scientists have discovered hundreds of genes that give rise to schizophrenia, autism and other brain disorders, but nobody knows what specifically goes wrong as a result of these genetic mutations," said lead researcher James Jontes, an associate professor of neuroscience at Ohio State and member of the university's Neurological Institute.

"Our goal is to understand the cellular roles of these genes and how defects can lead to developmental changes in the brain."

Zebrafish, or Danio rerio, are small tropical freshwater fish that appeal to scientists for a handful of reasons. Their embryos are transparent, they develop at warp speed and they share a significant chunk of DNA with people, allowing for an expedient and enlightening examination of developmental changes that could eventually have implications in attempts to thwart human disease.

Jontes and his collaborator, graduate student Sarah Light, wanted to see what happened neurologically when they introduced a PCDH19 mutation into zebrafish.

Using a high-powered microscope that allowed the researchers to watch cellular-level changes over time - an instrument that Jontes made himself - the researchers saw clear differences between embryonic development in normal "wild type" zebrafish and embryonic zebrafish in which they'd eliminated the PCDH19 gene.

"This is the first study to use functional imaging at a single-cell level to explore the effects of a mutation known to cause human neurological disease in a living organism, and we saw obvious differences in the brain architecture of the animals with the mutation," Jontes said.

"This type of work has the potential to help us understand in more detail the relationships between genes and diseases including autism and epilepsy. We don't understand exactly what these mutations do to brain structure and development in humans and if we can figure out what they do in fish, that will get us a long way toward some answers."

Neurons form networks in the brain that are essential to human development, thought, function, behavior and emotion. In the altered zebrafish, the researchers were able to observe neuron-level activity with great detail.

And, with the help of advanced mathematical analysis designed to look for relationships between the neurons and patterns in their activity, they saw that the neurological networks in the zebrafish with the mutation were more connected, or clustered, than in the brains of ordinary zebrafish.

The data was collected between three and six days after fertilization, a period of rapid growth and maturation in zebrafish. By the sixth day after fertilization, zebrafish larvae already are demonstrating behaviors such as hunting for food and swimming.

"We saw lots of interconnections between neurons in the mutant zebrafish. We don't know exactly what that means, but it could mean that inappropriate connections are occurring between cells that wouldn't normally interact. Maybe it becomes a problem when too many cells are incorporated into a network of neurons."

Jontes said neuroscientists are intrigued by the fact that any number of genetic mutations have been linked to a given disease, such as autism.

Work like this could help explain how each of those mutations results in human illness, and that could be an important step toward better treatment, he said.
-end-
The National Eye Institute supported this research.

CONTACT: James Jontes, 614-292-7263; James.Jontes@osumc.edu

Written by Misti Crane, 614-292-5220; Crane.11@osu.edu

Ohio State University

Related Autism Articles:

Brain protein mutation from child with autism causes autism-like behavioral change in mice
A de novo gene mutation that encodes a brain protein in a child with autism has been placed into the brains of mice.
Autism and theory of mind
Theory of mind, or the ability to represent other people's minds as distinct from one's own, can be difficult for people with autism.
Potential biomarker for autism
A study of young children with autism spectrum disorder published in JNeurosci reveals altered brain waves compared to typically developing children during a motor control task.
Autism and the smell of fear
Autism typically involves the inability to read social cues. We most often associate this with visual difficulty in interpreting facial expression, but new research at the Weizmann Institute of Science suggests that the sense of smell may also play a central role in autism.
Autism often associated with multiple new mutations
Most autism cases are in families with no previous history of the disorder.
State laws requiring autism coverage by private insurers led to increases in autism care
A new study led by researchers at the Johns Hopkins Bloomberg School of Public Health has found that the enactment of state laws mandating coverage of autism spectrum disorder (ASD) was followed by sizable increases in insurer-covered ASD care and associated spending.
Autism's gender patterns
Having one child with autism is a well-known risk factor for having another one with the same disorder, but whether and how a sibling's gender influences this risk has remained largely unknown.
Pinpointing the origins of autism
The origins of autism remain mysterious. What areas of the brain are involved, and when do the first signs appear?
Genes, ozone, and autism
Exposure to ozone in the environment puts individuals with high levels of genetic variation at an even higher risk for developing autism than would be expected just by adding the two risk factors together, a new analysis shows.
New form of autism found
Autism spectrum disorders (ASD) affect around one percent of the world's population and are characterized by a range of difficulties in social interaction and communication.
More Autism News and Autism Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.