How bacteria acquire antibiotic resistance in the presence of antibiotics

May 23, 2019

A new study's disconcerting findings reveal how antibiotic resistance is able to spread between bacteria cells despite the presence of antibiotics that should prevent them from growing. The results reveal the ability for previously drug-sensitive bacteria to survive exposure to antibiotics long enough to express resistance genes they've just acquired - effectively rendering them immune to antibiotic drugs. The mechanisms underlying this process, including a drug-jettisoning pump found in virtually all bacteria, represent targets for combatting antibiotic resistance. Bacteria can acquire new genes by receiving snippets of DNA (plasmids) from other bacteria through horizontal gene transfer mechanisms like bacterial conjugation, which often confer genetic advantages, including antibiotic resistance, in the recipient cell. A vast array of conjugative plasmids have been identified in drug-resistant bacteria, which carry one or more resistance genes to most - if not all - clinically used antibiotic drugs. While bacterial conjugation is the primary method by which drug-resistance is spread in bacterial pathogens, many aspects of the process are poorly understood and remain to be described in vivo. Using live-cell microscopy and a novel system for visualizing the transmission of plasmids in real time and at the cellular level, Sophie Nolivos and colleagues tracked the transfer of a plasmid carrying a tetracycline resistance gene from a drug-resistant E. coli donor bacterium to another bacterium initially susceptible to the antibiotic drug. Shortly after the plasmid-encoded genes were transferred, TetA, a protein that mediates tetracycline resistance, was rapidly produced in the recipient bacterium. Unexpectedly, however, Nolivos et al. observed that previously antibiotic-sensitive bacteria were still able to aquire tetracycline resistance through plasmid echange and produce the TetA resistance factor, despite being exposed to the drug. The results show that this ability stems from help from the AcrAB-TolC multidrug efflux pump of bacteria, which buys time for TetA translation by keeping tetracycline concentration below toxic levels within the bacterial cell. In a related Perspective, Vanessa Povolo and Martin Ackerman discuss the study in detail.

American Association for the Advancement of Science

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to