Nav: Home

Hot new approach to 'green' hydrogen production is 'next logical step'

May 23, 2019

Electrifying the conventional fossil-fueled approaches to steam-methane reforming (SMR) enables a "greener" approach to industrial hydrogen production, one that maximizes methane conversion while limiting the formation of unwanted carbon byproducts, researchers report. If implemented globally, the researchers' more efficient reactors - which are about 100 times smaller than traditional reactors, otherwise as big as a six-story building - could eliminate nearly 1% of all global carbon dioxide (CO2) emissions. "We see the electrified reformer as the next logical step in the chemical industry," says co-author Peter Mortensen in a related video, "because in this way we can transform the industry going towards greener processes, but [with] processes that are at the same time feasible so ... we don't have to increase the production prices." Steam methane reforming (SMR) is the most common process used to produce hydrogen, which is an important ingredient in the synthesis of industrial chemicals, like the ammonia used in agricultural fertilizers. Using very high temperatures and steam, SMR reformers convert methane into carbon dioxide and hydrogen. However, this widely used method also has a significant CO2 footprint; not only is the greenhouse gas produced as a byproduct of the reaction, fossil-fuel burning furnaces are used to supply the heat required to drive the reactions. While SMR generates nearly 50% of the global supply of hydrogen, it's estimated that the process accounts for nearly 3% of global CO2 emissions, and despite decades of research into improving the efficiency of the process, no lower-emission alternatives have been implemented at an industrial scale, the authors say. Here, Wismann et al. present an electrically-driven version of methane reforming, which uses an AC current and direct electrical resistance to heat the reactors. Unlike conventional SMR, the electrified process supplies heat uniformly across the reactor. What's more, integrated heating allows for exceptionally compact reactor designs. In a related Perspective, Kevin Geem et al. suggest that electrification of other industrial chemical processes could pave a sustainable path forward, particularly as the costs of electricity from renewable sources continues to decline.

American Association for the Advancement of Science

Related Hydrogen Articles:

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.
World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.
Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.
Observing hydrogen's effects in metal
Microscopy technique could help researchers design safer reactor vessels or hydrogen storage tanks.
The 'Batman' in hydrogen fuel cells
In a study published in Nature on Jan. 31, researchers at the University of Science and Technology of China (USTC) report advances in the development of hydrogen fuel cells that could increase its application in vehicles, especially in extreme temperatures like cold winters.
Paving the way for more efficient hydrogen cars
Hydrogen-powered vehicles emit only water vapor from their tailpipes, offering a cleaner alternative to fossil-fuel-based transportation.
New catalyst produces cheap hydrogen
QUT chemistry researchers have discovered cheaper and more efficient materials for producing hydrogen for the storage of renewable energy that could replace current water-splitting catalysts.
The faint glow of cosmic hydrogen
A study published recently in Nature magazine, in which Ana Monreal-Ibero, a researcher at the Instituto de Astrofísica de Canarias (IAC) is a participant, reveals the presence of a hitherto undetected component of the universe: large masses of gas surrounding distant galaxies.
New technology improves hydrogen manufacturing
INL researchers demonstrated high-performance electrochemical hydrogen production at a lower temperature than had been possible before.
Hydrogen transfer: One thing after the other
Hydride transfer is an important reaction for chemistry (e.g., fuel cells), as well as biology (e.g., respiratory chain and photosynthesis).
More Hydrogen News and Hydrogen Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at