Lehigh professor develops way to make plastics stronger, more environmentally friendly

May 24, 2001

Telephones, TV parts, the computer mouse at your fingertips, parts inside a PC, and other everyday products are made with plastics using a process called injection molding. A Lehigh University professor has developed a simple, software-directed device that vibrates molten plastic in an injection mold to produce stronger plastic products that are environmentally beneficial.

Injection molding involves injecting molten plastic into a mold. Only a small amount of recycled plastic is used in this process, says John Coulter, Lehigh associate professor of mechanical engineering and mechanics, because recycled plastic is poor in quality and would reduce the product's strength. Coulter's vibration-assisted process enables manufacturers to recycle once-useless and environmentally unfriendly plastic, and still produce stronger products than those produced using new plastic that is not vibrated.

Researchers have tried to vibrate heated plastic, but most methods require costly machine and/or mold changes. Coulter and his Lehigh colleagues have found that by vibrating the feed screw device used to deliver the liquefied plastic material into the mold, they can achieve the same results without the need to vibrate the mold. Making simple alterations to the screw's hydraulic system, Coulter designed software that directs the device to vibrate at low frequencies once the plastic has been fed into the mold.

Coulter says plastics are strengthened through vibration because the motion changes their molecular orientation or alignment. Molecules in non-vibrated plastics may stick to the wall of the mold or become folded over. But vibration jiggles the molecules, mixing them more uniformly and allowing them to stretch out to take advantage of their entire length.

Coulter hopes to learn the optimal vibration protocols to apply to specific materials and applications. He notes, for example, that further studies may show that too much vibration will actually weaken a product.

Lehigh's vibration technique could be cheaply and widely adopted by manufacturers, Coulter says. "If this process takes off, any company involved in injection molding could duplicate what we are doing inexpensively and probably do it better. Essentially, all you are doing is changing the signal that controls the hydraulics."

Coulter found that by adding 50 percent waste polystyrene and vibrating the mixture, he can produce a stronger product than if he used 100 percent new polystyrene without the vibration process. He believes the ability of the vibration process to use large amounts of recycled plastic material may turn out to be of greater significance than the fact that it increases the strength of plastic products.

Coulter, a specialist in intelligent manufacturing, received a Presidential Faculty Fellowship from the National Science Foundation in 1993, a five-year grant, to study this field. He says he will continue to study vibration-assisted injection molding until the process is fully understood. "My plan and hope is that Lehigh will take the lead in introducing and explaining its use and benefits," he says.

Lehigh University

Related Plastics Articles from Brightsurf:

Bioplastics no safer than other plastics
Bioplastics contain substances that are as toxic as those in ordinary plastics.

A first-of-its-kind catalyst mimics natural processes to break down plastics
A team of scientists led by the U.S. Department of Energy's Ames Laboratory has developed a first-of-its-kind catalyst that is able to process polyolefin plastics, types of polymers widely used in things like plastic grocery bags, milk jugs, shampoo bottles, toys, and food containers.

Plastics, waste and recycling: It's not just a packaging problem
Discussions of the growing plastic waste problem often focus on reducing the volume of single-use plastic packaging items such as bags, bottles, tubs and films.

'Critical' questions over disease risks from ocean plastics
Key knowledge gaps exist in our understanding of how ocean microplastics transport bacteria and viruses -- and whether this affects the health of humans and animals, researchers say.

Plastics, pathogens and baby formula: What's in your shellfish?
The first landmark study using next-generation technology to comprehensively examine contaminants in oysters in Myanmar reveals alarming findings: the widespread presence of human bacterial pathogens and human-derived microdebris materials, including plastics, kerosene, paint, talc and milk supplement powders.

Chemists make tough plastics recyclable
MIT chemists have developed a way to modify thermoset plastics with a chemical linker that makes it much easier to recycle them, but still allows them to retain their mechanical strength.

The many lifetimes of plastics
Many of us have seen informational posters at parks or aquariums specifying how long plastics bags, bottles, and other products last in the environment.

Recycling plastics together, simple and fast
Scientists successfully blended different types of plastics to be recycled together, providing a solution to the environmental problem of plastic waste and adding economic value to plastic materials.

Water replaces toxins: Green production of plastics
A new way to synthesize polymers, called hydrothermal synthesis, can be used to produce important high-performance materials in a way which is much better for the environment.

Untwisting plastics for charging internet-of-things devices
Scientists are unraveling the properties of electricity-conducting plastics so they can be used in future energy-harvesting devices.

Read More: Plastics News and Plastics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.