Endogenous cannabinoids linked to fetal brain damage imposed by maternal cannabis use

May 24, 2007

A critical step in brain development is governed by endogenous cannabinoids, 'the brain's own marijuana'. Studies conducted at Swedish medical university Karolinska Institutet, with participation of scientists from Europe and the United States, are now published in Science and show that these endogenous molecules regulate how certain nerve cells recognize each other and form connections. The scientists believe that their findings will significantly advance our understanding of how cannabis smoking during pregnancy may damage the fetal brain.

The formation of connections among nerve cells occurs during a relatively short period in the fetal brain. However, proper wiring of hundreds of millions of cells in our brains determine whether we can think, remember, move, or show emotions throughout our lives. For a nerve cell, recognizing its partners and establish connections with them is the key to survive and contribute to the control of brain functions. The process through which nerve cells recognize each other is guided by specific chemical signals whose availability instructs neurons to target or to ignore specific cells.

Scientists have now identified that endogenous cannabinoids, molecules naturally produced by our brains and functionally similar to THC from cannabis, play unexpectedly significant roles in establishing how certain nerve cells connect to each other. These new and exciting results not only bolster out knowledge on the brain's normal development but may also take us closer to understanding if and when cannabis damages the fetal brain.

Endogenous cannabinoids use the same mechanism, engaging the CB1 cannabinoid receptor, as THC to exert their effects on nerve cells. Therefore, the finding that endogenous cannabinoids control the establishment of connections amongst certain nerve cells convinces the scientists that they have defined a key mechanism through which maternal cannabis use might impair fetal brain development and impose life-long cognitive, social, and motor deficits in affected offspring. "Besides identifying a fundamental mechanism in brain development, our findings may provide new perspectives to identifying the molecular changes in the brains of individuals prenatally affected by maternal cannabis abuse", says Dr. Tibor Harkany who has led the studies. "This is of social impact given the continuous growing use of marijuana, the most common illicit drug, in our society."

Earlier studies have already found that children of marijuana-smoking mothers more frequently suffer from permanent cognitive deficits, concentration disorders, hyperactivity, and impaired social interactions than non-exposed children of the same age and social background.
-end-
Publication:
"Hardwiring the Brain: Endocannabinoids Shape Neuronal Connectivity"
Paul Berghius, Ann M Rajnicek, Yury M Morozov, Ruth A Ross, Jan Mulder, Gabriella M Urbán, Krisztina Monory, Giovanni Marsicano, Michela Matteoli, Alison Canty, Andrew J Irving, István Katona, Yuchio Yanagawa, Pasko Rakic, Beat Lutz, Ken Mackie and Tibor Harkany
Science, May 25, 2007

For further information, please contact:

Press Officer Katarina Sternudd
Tel: +46 8 524 838 95 or +46 8 224 38 95 (mobile)
Email: Katarina.sternudd@ki.se

Karolinska Institutet

Related Nerve Cells Articles from Brightsurf:

Nerve cells let others "listen in"
How many ''listeners'' a nerve cell has in the brain is strictly regulated.

Nerve cells with energy saving program
Thanks to a metabolic adjustment, the cells can remain functional despite damage to the mitochondria.

Why developing nerve cells can take a wrong turn
Loss of ubiquitin-conjugating enzyme leads to impediment in growth of nerve cells / Link found between cellular machineries of protein degradation and regulation of the epigenetic landscape in human embryonic stem cells

Unique fingerprint: What makes nerve cells unmistakable?
Protein variations that result from the process of alternative splicing control the identity and function of nerve cells in the brain.

Ragweed compounds could protect nerve cells from Alzheimer's
As spring arrives in the northern hemisphere, many people are cursing ragweed, a primary culprit in seasonal allergies.

Fooling nerve cells into acting normal
In a new study, scientists at the University of Missouri have discovered that a neuron's own electrical signal, or voltage, can indicate whether the neuron is functioning normally.

How nerve cells control misfolded proteins
Researchers have identified a protein complex that marks misfolded proteins, stops them from interacting with other proteins in the cell and directs them towards disposal.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Research confirms nerve cells made from skin cells are a valid lab model for studying disease
Researchers from the Salk Institute, along with collaborators at Stanford University and Baylor College of Medicine, have shown that cells from mice that have been induced to grow into nerve cells using a previously published method have molecular signatures matching neurons that developed naturally in the brain.

Bees can count with just four nerve cells in their brains
Bees can solve seemingly clever counting tasks with very small numbers of nerve cells in their brains, according to researchers at Queen Mary University of London.

Read More: Nerve Cells News and Nerve Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.