A first -- Hebrew University scientist observes brain cell development in 'real time'

May 24, 2007

For the first time anywhere, a researcher at the Hebrew University of Jerusalem has succeeded in observing in vivo the generation of neurons in the brain of a mammal.

Dr. Adi Mizrahi of the Department of Neurobiology at the Alexander Silberman Institute of Life Sciences at the Hebrew University, used mouse models to study how neurons, or nerve cells, develop from an undifferentiated cellular sphere into a rich and complex cell. This has great significance for the future of brain research, said Dr. Mizrahi, since "the structural and functional complexity of nerve cells remains one of the biggest mysteries of neuroscience, and we now have a model to study this complexity directly."

The results of Dr. Mizrahi's groundbreaking work appeared in the online edition of Nature Neuroscience.

Using special microscopic imaging techniques, combined with virus gene technology, Dr. Mizrahi was able to develop an experimental model to study development of neural dendrites in vivo. The dendrites are the string-like extensions of the neuron that spread out to reach other neurons and serve as the points of communication between the neurons.

The model employed by Dr. Mizrahi in his research was the newborn neuron population which develops into the olfactory bulb of adult mice, providing them with a sense of smell. The development and maintenance of newborn neurons in this area was assessed by time-lapse imaging over several days at different stages of development. Mizrahi revealed that dendritic formation is highly dynamic. Moreover, once incorporated into the network, adult-born neurons in the study also remained dynamic and capable of continuous change.

This method provides a mechanism for observing, for the first time in a mammal, how a neuron develops into a rich and complex cell and how, once developed, neurons are maintained in the highly active and changing environment of the brain.

As for further research that some day could lead to significant breakthroughs in treatment of neural disorders, Dr. Mizrahi noted that "there are only a few small areas in the brain which are capable of neurogenesis, and they hide secrets we want to reveal."
-end-


The Hebrew University of Jerusalem

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.