Flexible genes allow ants to change destiny

May 24, 2007

The discovery of a flexible genetic coding in leaf-cutting ants sheds new light on how one of nature's ultimate self-organising species breeds optimum numbers of each worker type to ensure the smooth running of the colony.

Research at the University of Leeds shows that despite an inherited genetic pre-disposition to grow into a particular worker caste, ant larvae can be triggered by environmental stimuli to switch development depending on colony's workforce needs.

"Our previous research suggested that genetics did indeed play a part in caste determination - but not how much of a part," says evolutionary biologist Dr William Hughes of the Faculty of Biological Sciences. "This left us with a conundrum: ant colonies are a model of social efficiency, yet if genetics ruled caste development, then this would be a very rigid - and therefore very inefficient - method of ensuring an optimum workforce balance."

"It seems that ants have evolved their own solution to this problem. Given that it takes an ant eight weeks to develop from an egg into an adult, ant colonies have to predict the need for different types of worker well in advance, and a flexible combination of nature and nurture will help them do this."

Dr Hughes' research used colonies of Acromyrmex leaf-cutting ants, which have two distinct worker castes: large workers, which forage and build the nest and small workers, which care for the ant larvae and the fungus they eat. Worker ants are always female and the large workers are up to three times the size of the smaller ones. "Males don't do much other than eat, fly off, mate and die," says Dr Hughes.

As leaf-cutting queens mate with multiple males, they make good candidates for examining role of genetics in caste determination. With the same mother and rearing conditions, the only differences between workers within a colony will be the genes inherited from their different fathers.

To see if genetic pre-disposition was fixed, all the large workers were removed from a colony to stimulate the need for more larvae to develop into this caste. The results showed that genetic types that didn't normally develop into large workers did so when the need for this caste was increased, proving that the genetic influence is adaptable.

Leaf-cutting ants have an enormous ecological impact because of the amount of leaves they harvest and are a significant pest for several crops. They particularly like citrus and Eucalyptus trees and a colony of the Atta species can defoliate a tree in a single night. They have been estimated to remove 17 per cent of leaf production in some tropical forests. Understanding how colonies function may well offer new opportunities to control their impact.

"We don't yet know what environmental cues influence the caste destiny of the larvae - it could be the food they're fed, the temperature, or even pheromones," says Dr Hughes.

Dr Hughes' research has been published online in Proceedings of the Royal Society B: Biological Sciences.
-end-


University of Leeds

Related Genetics Articles from Brightsurf:

Human genetics: A look in the mirror
Genome Biology and Evolution's latest virtual issue highlights recent research published in the journal within the field of human genetics.

The genetics of blood: A global perspective
To better understand the properties of blood cells, an international team led by UdeM's Guillaume Lettre has been examining variations in the DNA of 746,667 people worldwide.

Turning to genetics to treat little hearts
Researchers makes a breakthrough in understanding the mechanisms of a common congenital heart disease.

New drugs more likely to be approved if backed up by genetics
A new drug candidate is more likely to be approved for use if it targets a gene known to be linked to the disease; a finding that can help pharmaceutical companies to focus their drug development efforts.

Mapping millet genetics
New DNA sequences will aid in the development of improved millet varieties

Genetics to feed the world
A study, published in Nature Genetics, demonstrated the effectiveness of the technology known as genomic selection in a wheat improvement program.

The genetics of cancer
A research team has identified a new circular RNA (ribonucleic acid) that increases tumor activity in soft tissue and connective tissue tumors.

New results on fungal genetics
An international team of researchers has found unusual genetic features in fungi of the order Trichosporonales.

Mouse genetics influences the microbiome more than environment
Genetics has a greater impact on the microbiome than maternal birth environment, at least in mice, according to a study published this week in Applied and Environmental Microbiology.

New insights into genetics of fly longevity
Alexey Moskalev, Ph.D., Head of the Laboratory of Molecular Radiobiology and Gerontology Institute of Biology, and co-authors from the Institute of biology of Komi Science Center of RAS, Engelgard's Institute of molecular biology, involved in the study of the aging mechanisms and longevity of model animals announce the publication of a scientific article titled: 'The Neuronal Overexpression of Gclc in Drosophila melanogaster Induces Life Extension With Longevity-Associated Transcriptomic Changes in the Thorax' in Frontiers in Genetics - a leading open science platform.

Read More: Genetics News and Genetics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.