Antibacterial silver nanoparticles are a blast

May 24, 2010

Writing in the International Journal of Nanoparticles, Rani Pattabi and colleagues at Mangalore University, explain how blasting silver nitrate solution with an electron beam can generate nanoparticles that are more effective at killing all kinds of bacteria, including gram-negative species that are not harmed by conventional antibacterial agents.

Your running shoes, socks and even computer keyboard may be impregnated with silver nanoparticles that can kill some bacteria, keep you smelling sweet and preventing the spread of infection among computer users. Researchers in India point out that silver nanoparticles are not only antibacterial against so-called gram-positive bacteria, such as resistant strains of Staphylococcus aureus and Streptococcus pneumoniae but, also against gram-negative Escherichia coli and Pseudomonas aeruginosa.

Bacterial resistance to conventional antibiotics is threatening human health the world over. Medicinal chemists are desperately trying to develop new compounds that can kill strains such as MRSA (methicillin, or multiple-resistant Staphylococcus aureus) and E. coli O157. Frontline defenses, such as environmentally benign and cost-effective antibacterial compounds could prevent such infective agents spreading through contact with computer keyboard, phones and other devices.

Silver has been known to have antibacterial properties since ancient times. A modern technological twist means it has come to the fore for a wide range of applications because of the emergence of resistance to antibacterial gels. As such a new industry involving the production of bacteriostatic agents, including silver nanoparticles, has emerged.

Researchers have been experimenting with radiation to split silver compounds, releasing silver ions that then clump together to form nanoparticles. The incentive lies in the fact that such an approach avoids the need for costly and hazardous reducing agents and can be fine-tuned to produce nanoparticles of a controlled size, which is important for controlling their properties. Pattabi and colleagues have used electron beam technology to irradiate silver nitrate solutions in a biocompatible polymer, polyvinyl alcohol, to form their silver nanoparticles.

Preliminary tests show that silver nanoparticles produced by this straightforward, non-toxic method are highly active against S. aureus, E. coli, and P. aeruginosa.
-end-
"Antibacterial potential of silver nanoparticles synthesised by electron beam irradiation", in Int. J. Nanoparticles, 2010, 3, 53-64

Inderscience Publishers

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.