LiDAR technology reveals faults near Lake Tahoe

May 24, 2012

CARNELIAN BAY, Calif. -- Results of a new U.S. Geological Survey study conclude that faults west of Lake Tahoe, Calif., referred to as the Tahoe-Sierra frontal fault zone, pose a substantial increase in the seismic hazard assessment for the Lake Tahoe region of California and Nevada, and could potentially generate earthquakes with magnitudes ranging from 6.3 to 6.9. A close association of landslide deposits and active faults also suggests that there is an earthquake-induced landslide hazard along the steep fault-formed range front west of Lake Tahoe.

Using a new high-resolution imaging technology, known as bare-earth airborne LiDAR (Light Detection And Ranging), combined with field observations and modern geochronology, USGS scientists, and their colleagues from the University of Nevada, Reno; the University of California, Berkeley; and the U.S. Army Corps of Engineers, have confirmed the existence of previously suspected faults.

LiDAR imagery allows scientists to "see" through dense forest cover and recognize earthquake faults that are not detectable with conventional aerial photography.

"This study is yet one more stunning example of how the availability of LiDAR information to precisely and accurately map the shape of the solid Earth surface beneath vegetation is revolutionizing the geosciences," said USGS Director Marcia McNutt. "From investigations of geologic hazards to calculations of carbon stored in the forest canopy to simply making the most accurate maps possible, LiDAR returns its investment many times over."

Motion on the faults has offset linear moraines (the boulders, cobbles, gravel, and sand deposited by an advancing glacier) providing a record of tectonic deformation since the moraines were deposited. The authors developed new three-dimensional techniques to measure the amount of tectonic displacement of moraine crests caused by repeated earthquakes. Dating of the moraines from the last two glaciations in the Tahoe basin, around 21 thousand and 70 thousand years ago, allowed the study authors to calculate the rates of tectonic displacement.

"Although the Tahoe-Sierra frontal fault zone has long been recognized as forming the tectonic boundary between the Sierra Nevada to the west, and the Basin and Range Province to the east, its level of activity and hence seismic hazard was not fully recognized because dense vegetation obscured the surface expressions of the faults," said USGS scientist and lead author, James Howle. "Using the new LiDAR technology has improved and clarified previous field mapping, has provided visualization of the surface expressions of the faults, and has allowed for accurate measurement of the amount of motion that has occurred on the faults. The results of the study demonstrate that the Tahoe-Sierra frontal fault zone is an important seismic source for the region."
-end-
An abstract of the paper, "Airborne LiDAR analysis and geochronology of faulted glacial moraines in the Tahoe-Sierra frontal fault zone reveal substantial seismic hazards in the Lake Tahoe region, California-Nevada USA," published in the "Geological Society of America Bulletin" is available online. Contact GSA for a copy of the full article.

A video is available online showing a visual example of how airborne LiDAR (Light Detection And Ranging) imagery penetrates dense forest cover to reveal an active fault line not detectable with conventional aerial photography.

Contact Information:

U.S. Department of the Interior, U.S. Geological Survey
Office of Communications and Publishing
12201 Sunrise Valley Dr, MS 119
Reston, VA 20192

Paul Laustsen, USGS
Phone: 650-329-4000

Kea Giles, GSA
Phone: 303-357-1057

Geological Society of America

Related Faults Articles from Brightsurf:

New evidence for geologically recent earthquakes near Portland, Oregon metro area
A paleoseismic trench dug across the Gales Creek fault, located about 35 kilometers (roughly 22 miles) west of Portland, Oregon, documents evidence for three surface-rupturing earthquakes that took place about 8,800, 4,200 and 1,000 years ago.

A scalable method of diagnosing HVAC sensor faults in smart buildings
Heating, ventilation and air-conditioning (HVAC) systems are the biggest consumers of energy in a building.

Researchers develop new explanation for destructive earthquake vibrations
High-frequency vibrations are some of the most damaging ground movements produced by earthquakes, and Brown University researchers have a new theory about how they're produced.

Upper-plate earthquakes caused uplift along New Zealand's Northern Hikurangi Margin
Earthquakes along a complex series of faults in the upper plate of New Zealand's northern Hikurangi Subduction Margin were responsible for coastal uplift in the region, according to a new evaluation of local marine terraces.

Machu Picchu: Ancient Incan sanctuary intentionally built on faults
The ancient Incan sanctuary of Machu Picchu is considered one of humanity's greatest architectural achievements.

Faults' hot streaks and slumps could change earthquake hazard assessments
For more than a century, a guiding principle in seismology has been that earthquakes recur at semi-regular intervals according to a 'seismic cycle.' In this model, strain that gradually accumulates along a locked fault is completely released in a large earthquake.

New map outlines seismic faults across DFW region
Scientists from SMU, The University of Texas at Austin and Stanford University found that the majority of faults underlying the Fort Worth Basin are as sensitive to forces that could cause them to slip as those that have hosted earthquakes in the past.

Many Dallas-Fort Worth area faults have the potential to host earthquakes, new study finds
A study led by The University of Texas at Austin has found that the majority of faults underlying the Fort Worth Basin are as sensitive to changes in stress that could cause them to slip as those that have generated earthquakes in recent years.

Models suggest faults are linked through California's Imperial Valley
New mechanical modeling of a network of active strike-slip faults in California's Imperial Valley suggests the faults are continuously linked, from the southern San Andreas Fault through the Imperial Fault to the Cerro Prieto fault further to the south of the valley.

Catalog of north Texas earthquakes confirms continuing effects of wastewater disposal
A comprehensive catalog of earthquake sequences in Texas's Fort Worth Basin, from 2008 to 2018, provides a closer look at how wastewater disposal from oil and gas exploration has changed the seismic landscape in the basin.

Read More: Faults News and Faults Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.
Can't connect to localhost. Errorcode: 1203