New water-quality data on impact of corn, soybeans on nitrate in Iowa streams

May 24, 2016

As Iowa farmers have planted more acres of corn to meet the demand driven by the corn-based ethanol industry, many models predicted that nitrate concentrations in Iowa streams would increase accordingly. However, recent IIHR research based on water monitoring and published in the Journal of Soil and Water Conservation casts doubt on these predictions.

IIHR--Hydroscience & Engineering researchers Chris Jones, Keith Schilling, and Kung-Sik Chan, along with colleagues at the Iowa Soybean Association, evaluated water monitoring results from more than 7,000 water samples collected in the Raccoon River watershed of Central Iowa from 1999-2014. The team also had access to fertilization data for 700 fields in the watershed. The information led the researchers to believe that nitrate levels are less dependent on corn production acres than previously thought. As more acres were planted in corn (and fewer in soybeans), fertilizer application increased a whopping 24 percent in the watershed. Interestingly, river nitrate did not increase and may have even decreased slightly at most watershed locations.

"One might conclude from these data that fertilizer use efficiency improved," Jones says. "But we believe that was not the case. The amount of nitrogen leaving the watershed in the harvested grain actually declined a little bit during our study."

Where did the additional fertilizer nitrogen go? Jones says that clues can be found in the differences between corn and soybean plant growth, soil chemistry, and the decay of stalks and other crop residues. Nitrate-nitrogen can accumulate and be immobilized in the soil under corn. On the other hand, dead and decomposing soybean plants can increase the amount of nitrate in the soil vulnerable to loss (more so than cornstalks), especially if accompanied by fall tillage. Also, there is evidence that tile discharge may increase under soybean fields as a result of reduced plant evapotranspiration compared to corn. Therefore, because tile nitrate concentrations are similar under both corn and soybean, more tile flow under soybean can mean more nitrate delivered to streams. As a result, Jones says he and his colleagues believe that declining soybean acres may have reduced the cropped areas most vulnerable to nitrate loss, more than compensating for the increased fertilizer inputs on corn acreage.

Subsequent research conducted by Schilling, Jones, and Gabriele Villarini also supports this idea. A mathematical model developed by Villarini shows Raccoon River nitrate is dependent upon the previous year's soybean area.

"Understanding this process could prove important as we try to reduce the loss of nutrients to Iowa streams as part of the Iowa Nutrient Reduction Strategy," Jones says. "We know we can't just focus on fertilization of corn. We need a systems approach to improve water quality. It also demonstrates the power of monitoring water quality. Without this data, we could easily have missed this important and counter-intuitive conclusion."
-end-
IIHR is committed to collecting this essential water-quality data and making it easily available to Iowans through its web tool, the Iowa Water-Quality Information System.

IIHR--Hydroscience & Engineering, a unit of the University of Iowa's College of Engineering, is a world-renowned center for education, research, and public service focusing on hydraulic engineering and fluid mechanics.

University of Iowa

Related Soybean Articles from Brightsurf:

Isoflavones in soybean help protect pigs against viral infections
Pigs that eat soybean as a regular part of their diet may be better protected against viral pathogens, a new study from University of Illinois shows.

Soybean seeding rates and risk
Broad study helps define optimal soybean seeding rates in North America.

Researchers find significant economic losses due to soybean diseases
Economic losses due to soybean diseases in the United States from 1996 to 2016 amounted to more than $95 billion, according to a team of researchers in Penn State's College of Agricultural Sciences who examined the long-term impact of soybean diseases on production in the U.S.

Soybean Innovation Lab provides knowledge that assists soybean production in Africa
The Soybean Innovation Lab (SIL), housed in the College of Agricultural, Consumer and Environmental Sciences at the University of Illinois, is funded by USAID's Feed the Future initiative to help bring research-based innovation and technology to develop soybean production in Sub-Saharan Africa.

Fungus application thwarts major soybean pest, study finds
The soybean cyst nematode sucks the nutrients out of soybean roots, causing more than $1 billion in soybean yield losses in the U.S. each year.

Organic soybean producers can be competitive using little or no tillage
Organic soybean producers using no-till and reduced-tillage production methods that incorporate cover crops -- strategies that protect soil health and water quality -- can achieve similar yields at competitive costs compared to tillage-based production.

Genes controlling mycorrhizal colonization discovered in soybean
Like most plants, soybeans pair up with soil fungi in a symbiotic mycorrhizal relationship.

Complete genome of devastating soybean pathogen assembled
An international research collaboration has successfully assembled the complete genome sequence of the pathogen that causes the devastating disease Asian soybean rust.

Chinese scientists update soybean genome to a golden reference
Soybean is one of the most important crops worldwide. A high-quality reference genome will facilitate its functional analysis and molecular breeding.

Illinois study identifies a key to soybean cyst nematode growth
The soybean cyst nematode, one of the crop's most destructive pests, isn't like most of its wormy relatives.

Read More: Soybean News and Soybean Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.