A fresh look inside the protein nano-machines

May 24, 2017

Proteins perform vital functions of life, they digest food and fight infections and cancer. They are in fact nano-machines, each one of them designed to perform a specific task. But how did they evolve to match those needs, how did the genes encode the structure and function of proteins? Researchers from the University of Geneva (UNIGE), Switzerland, the Institute for Basic Science, Korea, and the Rockefeller University, United States, have conducted a study that tackles this yet unanswered question, and explains the basic geometry of the gene-to-protein code, by connecting proteins to properties of amorphous physical matter. The full article appears in Physical Review X.

A protein is a chain made of twenty different kinds of amino acids with elaborate interactions, and, unlike standard physical matter, it is selected by evolution. "The blueprint for protein synthesis is written in long DNA genes, but we show that only a small fraction of this huge information space is used to make the functional protein", explains Jean-Pierre Eckmann, Professor at the Department of Theoretical Physics from the Faculty of Science of UNIGE.

Together with Prof. Tsvi Tlusty from the Center for Soft and Living Matter, Institute for Basic Science (IBS) in Korea and Prof. Albert Libchaber from the Rockefeller University in New York, Prof. Eckmann shows that the only changes in the code that matter are those occurring in the segment of the gene coding the mechanically relevant hinges of the nano-machine. The changes in other regions of this highly redundant code have no impact. "We are now using this new approach to understand the relation between the function and dynamics of several important proteins."
-end-


Université de Genève

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.