Water is surprisingly ordered on the nanoscale

May 24, 2017

Nanometric-sized water drops are everywhere - in the air as droplets or aerosols, in our bodies as medication, and in the earth, within rocks and oil fields. To understand the behavior of these drops, it is necessary to know how they interact with their hydrophobic environment. This interaction takes places at the curved droplet interface, a sub-nanometric region that surrounds the small pocket of water. Researchers from EPFL, in collaboration with the institute AMOLF in the Netherlands, were able to observe what was going on in this particular region. They discovered that molecules on the surface of the drops were much more ordered than expected. Their surprising results have been published in Nature Communications. They pave the way to a better understanding of atmospheric, biological and geological processes.

Unique perspective on miniscule droplets

At EPFL, Sylvie Roke, director of the Julia Jacobi Chair of Photomedicine -

Laboratory for Fundamental BioPhotonics, has developed a unique method for examining the surface of these droplets that are as thick as one thousandth of a hair, with a volume of an attoliter (18 zeros behind the comma). "The method involves overlapping ultrashort laser pulses in a mixture of water droplets in liquid oil and detecting photons that are scattered only from the interface", explains Roke. "These photons have the sum frequency of the incoming photons and are thus of a different color. With this newly generated color we can know the structure of the only the interface."

Hydrogen bonding as strong as in ice

The surface of the water droplets turns out to be much more ordered than that of normal water and is comparable to super cooled (liquid < 0 °C water) water in which the water molecules have very strong hydrogen bond interactions. In ice, these interactions lead to a stable tetrahedral surrounding of each water molecule. Surprisingly, this type of structure was found on the surface of the droplets even at the room temperature - 50 °C above were it would normally appear.

Chemical processes

This research provides valuable insight into the properties of nanometric water drops. "The chemical properties of these drops depend on how the water molecules are organized on the surface, so it's really important to understand what's going on there," explained Roke. Further research could target the surface properties of water droplets with adding salt, a more realistic model of marine aerosols that consist of salty water surrounded by a hydrophobic environment. Salt may either enhance the water network or reduce its strength. "Or, it may not do anything at all. Given the surprising results found here, we can only speculate", says Roke.
Article in Nature communications : The interfacial structure of water droplets in a hydrophobic liquid

Ecole Polytechnique Fédérale de Lausanne

Related Photons Articles from Brightsurf:

An electrical trigger fires single, identical photons
Researchers at Berkeley Lab have found a way to generate single, identical photons on demand.

Single photons from a silicon chip
Quantum technology holds great promise: Quantum computers are expected to revolutionize database searches, AI systems, and computational simulations.

Physicists "trick" photons into behaving like electrons using a "synthetic" magnetic field
Scientists have discovered an elegant way of manipulating light using a ''synthetic'' Lorentz force -- which in nature is responsible for many fascinating phenomena including the Aurora Borealis.

Scientists use photons as threads to weave novel forms of matter
New research from the University of Southampton has successful discovered a way to bind two negatively charged electron-like particles which could create opportunities to form novel materials for use in new technological developments.

The nature of nuclear forces imprinted in photons
IFJ PAN scientists together with colleagues from the University of Milano (Italy) and other countries confirmed the need to include the three-nucleon interactions in the description of electromagnetic transitions in the 20O atomic nucleus.

Pushing photons
UC Santa Barbara researchers continue to push the boundaries of LED design a little further with a new method that could pave the way toward more efficient and versatile LED display and lighting technology.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

An advance in molecular moviemaking shows how molecules respond to two photons of light
Some of the molecules' responses were surprising and others had been seen before with other techniques, but never in such detail or so directly, without relying on advance knowledge of what they should look like.

The imitation game: Scientists describe and emulate new quantum state of entangled photons
A research team from ITMO University, MIPT and Politecnico di Torino, has predicted a novel type of topological quantum state of two photons.

What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.

Read More: Photons News and Photons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.