New theory predicts wetted area of droplets colliding with flat surface

May 24, 2017

Japanese researchers have succeeded in deriving a theoretical formula that quantitatively predicts the wetting and spreading behavior of droplets that collide with the flat surface of a solid material. Although the behavior of droplets colliding with a solid surface looks simple superficially, it is actually quite complicated due to various factors which influence each other such as surface roughness, fluid motion, and wettability (ease of liquid adherence) of the solid surface by the liquid. In the past, researchers from all over the world have attempted to make quantitative predictions about the extent of wetted areas through experimentation, theory, and numerical analysis, but prediction, particularly during slow speed collisions, have not yet been realized.

Droplet collisions on solid surfaces is an important phenomenon for many industrial applications like ink jet printers, fuel injectors, and spray cooling. The maximum wetting and spreading area of droplets after collision is one of the most important parameters that influences the quality and efficiency of such equipment.

The maximum wetting and spreading area of a droplet also varies depending on the nature of the droplet, the speed at which the droplet strikes, and the nature of the solid upon which it strikes. For example, when a droplet collides with glass or Teflon, the maximum wetting and spreading area will be different. The ease with which a liquid adheres to a surface depends on the surface wettability. The wettability of droplets adhering to a solid surface is characterized by the tangential dynamic balance equation (Young equation) at the contact line.?Elements normal to the solid surface are ignored, since it is thought that they are balanced by reaction forces with the solid.

In previous theoretical studies on the maximum wetting and spreading area of collision droplets, only the balance equation of the contact line in the tangential direction was considered. There were no relational expressions to predict the maximum wetting and spreading area of a droplet under a wide range of impinging velocity conditions. Typically, two methods are used to make calculations, one when collision speeds are high and another when speeds are low. However, the conventional method used for high speed collisions generates large errors at low speeds and the conventional method used for low speed collisions returns large errors at high speeds.

To reduce calculation errors, a collaboration between Kumamoto University and Kyoto University researchers focused on what had yet to be studied in detail, the normal surface tension on the contact line and the energy balance of droplets colliding with solid surfaces. While doing so, they considered the disadvantages of using conventional methods for evaluating the viscous dissipation of energy caused by fluid motion inside a droplet at the time of collision, and derived a new theoretical formula.

The newly derived theoretical formula gives the possibility of quantitatively predicting the maximum wetting and spreading area when droplets collide with various types of solids, such as silicone rubber or super water repellent substrates. Furthermore, the researchers confirmed that it can be applied not only to milli-size but also to micro-size droplets.

"Recently, nanoscale circuit fabrication technology for semiconductor substrates using inkjet technology has attracted much attention," said Tenure Track Assistant Professor Yukihiro Yonemoto of Kumamoto University, who leads the study. "Observations of nanoscale phenomena, however, require expensive experimental equipment, and prediction by numerical analysis requires specialized technology. By using a simple method to predict the maximum wetting spreading area of a droplet after collision, we can expect to realize more efficient circuit designs among other things." Droplets that strike the surface of a flat solid material will not only stretch and spread, but will also split into finer droplets (splash phenomenon) if the energy at the time of a collision is large. Researchers at Kumamoto University and Kyoto University are currently working on a theory that considers these phenomena to further extend the results of their research.

This finding was posted online in the open access journal Scientific Reports on 24th May 2017.
-end-
[Citation]

Yukihiro Yonemoto and Tomoaki Kunugi. Analytical consideration of liquid droplet impingement on solid surfaces. Scientific Reports, 2017. DOI: 10.1038/s41598-017-02450-4

Kumamoto University

Related Energy Articles from Brightsurf:

Energy System 2050: solutions for the energy transition
To contribute to global climate protection, Germany has to rapidly and comprehensively minimize the use of fossil energy sources and to transform the energy system accordingly.

Cellular energy audit reveals energy producers and consumers
Researchers at Gladstone Institutes have performed a massive and detailed cellular energy audit; they analyzed every gene in the human genome to identify those that drive energy production or energy consumption.

First measurement of electron energy distributions, could enable sustainable energy technologies
To answer a question crucial to technologies such as energy conversion, a team of researchers at the University of Michigan, Purdue University and the University of Liverpool in the UK have figured out a way to measure how many 'hot charge carriers' -- for example, electrons with extra energy -- are present in a metal nanostructure.

Mandatory building energy audits alone do not overcome barriers to energy efficiency
A pioneering law may be insufficient to incentivize significant energy use reductions in residential and office buildings, a new study finds.

Scientists: Estonia has the most energy efficient new nearly zero energy buildings
A recent study carried out by an international group of building scientists showed that Estonia is among the countries with the most energy efficient buildings in Europe.

Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.

Harvesting energy from walking human body Lightweight smart materials-based energy harvester develop
A research team led by Professor Wei-Hsin Liao from the Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK) has developed a lightweight smart materials-based energy harvester for scavenging energy from human motion, generating inexhaustible and sustainable power supply just from walking.

How much energy do we really need?
Two fundamental goals of humanity are to eradicate poverty and reduce climate change, and it is critical that the world knows whether achieving these goals will involve trade-offs.

New discipline proposed: Macro-energy systems -- the science of the energy transition
In a perspective published in Joule on Aug. 14, a group of researchers led by Stanford University propose a new academic discipline, 'macro-energy systems,' as the science of the energy transition.

How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.

Read More: Energy News and Energy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.